Home
Class 12
MATHS
If f(x)=cos^(-1){(1-(log(e)x)^(2))/(1+(l...

If `f(x)=cos^(-1){(1-(log_(e)x)^(2))/(1+(log_(e)x)^(2))}`, then f'( e )

A

does not exist

B

is equal to `(2)/( e )`

C

is equal to `(1)/( e )`

D

is equal to 1

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(e) \) for the function \[ f(x) = \cos^{-1}\left(\frac{1 - (\log_e x)^2}{1 + (\log_e x)^2}\right), \] we will follow these steps: ### Step 1: Simplify the function using trigonometric identities We recognize that \[ \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = \cos(2\theta) \] if we let \( \tan \theta = \log_e x \). Thus, we can rewrite the function as: \[ f(x) = \cos^{-1}(\cos(2\theta)) = 2\theta = 2 \tan^{-1}(\log_e x). \] ### Step 2: Differentiate the function Now we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx}[2 \tan^{-1}(\log_e x)]. \] Using the chain rule, we have: \[ f'(x) = 2 \cdot \frac{1}{1 + (\log_e x)^2} \cdot \frac{d}{dx}[\log_e x]. \] The derivative of \( \log_e x \) is \( \frac{1}{x} \). Thus, we get: \[ f'(x) = 2 \cdot \frac{1}{1 + (\log_e x)^2} \cdot \frac{1}{x}. \] ### Step 3: Evaluate \( f'(e) \) Now we need to evaluate \( f'(e) \): 1. First, calculate \( \log_e e \): \[ \log_e e = 1. \] 2. Substitute \( x = e \) into the derivative: \[ f'(e) = 2 \cdot \frac{1}{1 + (1)^2} \cdot \frac{1}{e} = 2 \cdot \frac{1}{2} \cdot \frac{1}{e} = \frac{1}{e}. \] ### Final Result Thus, \[ f'(e) = \frac{1}{e}. \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA|Exercise Exercise|60 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If f(x)=cos^(-1){(1-(log_(e)x)^(2))/(1+(log_(e)x)^(2))}, then f'((1)/( e )) is equal to

Range of f(x)=cot^(-1)(log_(e)(1-x^(2))) is

If f(x) = log_(x^(2)) (log_(e) x) "then f' (x) at x= e" is

Consider f:(0,oo)rarr(-(pi)/(2),(pi)/(2)), defined as f(x)=tan^(-1)((log_(e)x)/((log_(e)x)^(2)+1))* The about function can be classified as

If f(x)=|log_(e) x|,then

Find the range of f(x)=log_(e)x-((log_(e)x)^(2))/(|log_(e)x|)

The function f(x)=cos^(-1)((|x|-3)/(2))+(log_(e)(4-x))^(-1) is defined for

OBJECTIVE RD SHARMA-DIFFERENTIATION-Chapter Test
  1. If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal t...

    Text Solution

    |

  2. If y=sin^(-1){(5x+12 sqrt(1-x^(2)))/(13)}, find (dy)/(dx).

    Text Solution

    |

  3. If f(x)=cos^(-1){(1-(log(e)x)^(2))/(1+(log(e)x)^(2))}, then f'( e )

    Text Solution

    |

  4. y=sin^(-1)[sqrt(x-a x)-sqrt(a-a x)]

    Text Solution

    |

  5. Let f(x)=(x^3+2)^(30) If f^n (x) is a polynomial of degree 20 where f^...

    Text Solution

    |

  6. If f(x)=cos^(2)x+cos^(2)(x+(pi)/(3))+sinxsin(x+(pi)/(3)) and g((5)/(4)...

    Text Solution

    |

  7. If f(x)=10cosx+(13+2x)sinx then f'(x)+f(x)=

    Text Solution

    |

  8. If a real valued function f(x) satisfies the equation f(x +y)=f(x)+f (...

    Text Solution

    |

  9. If f(x)=log{(u(x))/(v(x))},\ u(1)=v(1) and u^(prime)(1)=v^(prime)(1)=2...

    Text Solution

    |

  10. If f'(x)=arc tan((x^(x)-x^(-x))/(2)), then f'(1) is equal to

    Text Solution

    |

  11. Let f(x)=2^(2x-1)" and "g(x)=-2^(x)+2xlog2. Then the set of points sat...

    Text Solution

    |

  12. If y=logu|cos4x|+|sinx|,where u=sec2x find (dy)/(dx) at x=-pi/6

    Text Solution

    |

  13. If f(4)=4,f'(4)=1, then lim(x in4) (2-sqrt(f(x)))/(2-sqrt(x)) is equal...

    Text Solution

    |

  14. if 2x^2-3xy+y^2+x+2y-8=0 then (dy)/(dx)

    Text Solution

    |

  15. If y=log{((1+x)/(1-x))^(1//4)}-(1)/(2)tan^(-1)x," then "(dy)/(dx)=

    Text Solution

    |

  16. If x=costheta,y=sin50," then "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=

    Text Solution

    |

  17. If f : R - R is an even function which is twice differentiable on R an...

    Text Solution

    |

  18. Observe the following statements: "I. If "f(x)=ax^(41)+bx^(-40)," ...

    Text Solution

    |

  19. If x=e^tsint,y=e^tcost then (d^2y)/(dx^2) at x=pi is

    Text Solution

    |

  20. The value of (dy)/(dx) at x=(pi)/(2), where y is given by y=x^(sinx)...

    Text Solution

    |