Home
Class 12
MATHS
If f(x)=cos^(-1){(1-(log(e)x)^(2))/(1+(l...

If `f(x)=cos^(-1){(1-(log_(e)x)^(2))/(1+(log_(e)x)^(2))}`, then f'( e )

A

does not exist

B

is equal to `(2)/( e )`

C

is equal to `(1)/( e )`

D

is equal to 1

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(e) \) for the function \[ f(x) = \cos^{-1}\left(\frac{1 - (\log_e x)^2}{1 + (\log_e x)^2}\right), \] we will follow these steps: ### Step 1: Simplify the function using trigonometric identities We recognize that \[ \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = \cos(2\theta) \] if we let \( \tan \theta = \log_e x \). Thus, we can rewrite the function as: \[ f(x) = \cos^{-1}(\cos(2\theta)) = 2\theta = 2 \tan^{-1}(\log_e x). \] ### Step 2: Differentiate the function Now we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx}[2 \tan^{-1}(\log_e x)]. \] Using the chain rule, we have: \[ f'(x) = 2 \cdot \frac{1}{1 + (\log_e x)^2} \cdot \frac{d}{dx}[\log_e x]. \] The derivative of \( \log_e x \) is \( \frac{1}{x} \). Thus, we get: \[ f'(x) = 2 \cdot \frac{1}{1 + (\log_e x)^2} \cdot \frac{1}{x}. \] ### Step 3: Evaluate \( f'(e) \) Now we need to evaluate \( f'(e) \): 1. First, calculate \( \log_e e \): \[ \log_e e = 1. \] 2. Substitute \( x = e \) into the derivative: \[ f'(e) = 2 \cdot \frac{1}{1 + (1)^2} \cdot \frac{1}{e} = 2 \cdot \frac{1}{2} \cdot \frac{1}{e} = \frac{1}{e}. \] ### Final Result Thus, \[ f'(e) = \frac{1}{e}. \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA|Exercise Exercise|60 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

Range of f(x)=cot^(-1)(log_(e)(1-x^(2))) is

Consider f:(0,oo)rarr(-(pi)/(2),(pi)/(2)), defined as f(x)=tan^(-1)((log_(e)x)/((log_(e)x)^(2)+1))* The about function can be classified as

Knowledge Check

  • If f(x)=cos^(-1){(1-(log_(e)x)^(2))/(1+(log_(e)x)^(2))}, then f'((1)/( e )) is equal to

    A
    e
    B
    `-e`
    C
    1
    D
    `2e`
  • If f (x) = cos ^(-1) [ (1- (log x ) ^(2))/( 1 + ( log x ) ^(2)) ] then the value of f' (e) is equal to

    A
    1
    B
    `(1)/(e)`
    C
    `(2)/(e)`
    D
    `(2)/(e ^(2))`
  • If f(x) = log_(x^(2)) (log_(e) x) "then f' (x) at x= e" is

    A
    1
    B
    `(1)/(e)`
    C
    `(1)/(2e) `
    D
    0
  • Similar Questions

    Explore conceptually related problems

    If f(x)=|log_(e) x|,then

    Find the range of f(x)=log_(e)x-((log_(e)x)^(2))/(|log_(e)x|)

    The function f(x)=cos^(-1)((|x|-3)/(2))+(log_(e)(4-x))^(-1) is defined for

    If f (x) = tan ^(-1) [ (log ((e )/( x ^(2))))/(log (ex ^(2)))] + tan ^(-1) [ (3 + 2 log x )/( 1 - 6 log x )] then the vlaue of f''(x) is

    If f(x)=log_(x^(2))(logx) then f'(x) at x = e is