Home
Class 12
MATHS
If sinA+cosA=m an sin^(3)A+cos^(3)A=n, t...

If `sinA+cosA=m an sin^(3)A+cos^(3)A=n,` then

A

`m^(3)-3m+n=0`

B

`n^(3)-3n+2m=0`

C

`m^(3)-3m+2n=0`

D

`m^(3)+3m+2n=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to establish a relationship between \( m \) and \( n \) given the equations: 1. \( \sin A + \cos A = m \) 2. \( \sin^3 A + \cos^3 A = n \) We will use the identity for the sum of cubes and some trigonometric identities to derive the required relationship. ### Step-by-Step Solution: **Step 1: Use the identity for the sum of cubes.** The identity for the sum of cubes states: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] In our case, let \( a = \sin A \) and \( b = \cos A \). Therefore, \[ \sin^3 A + \cos^3 A = (\sin A + \cos A)(\sin^2 A - \sin A \cos A + \cos^2 A) \] **Step 2: Substitute \( \sin A + \cos A \) with \( m \).** From the first equation, we know that: \[ \sin A + \cos A = m \] Now, we need to find \( \sin^2 A + \cos^2 A \) and \( \sin A \cos A \). Using the Pythagorean identity: \[ \sin^2 A + \cos^2 A = 1 \] **Step 3: Express \( \sin^2 A - \sin A \cos A + \cos^2 A \).** Now we can substitute into our equation: \[ \sin^3 A + \cos^3 A = m(1 - \sin A \cos A) \] **Step 4: Express \( \sin A \cos A \) in terms of \( m \).** Using the identity: \[ \sin A \cos A = \frac{1}{2} \sin(2A) \] We can also express \( \sin A \cos A \) in terms of \( m \): \[ \sin A \cos A = \frac{m^2 - 1}{2} \] This comes from the expansion of \( (\sin A + \cos A)^2 \): \[ m^2 = \sin^2 A + \cos^2 A + 2\sin A \cos A = 1 + 2\sin A \cos A \] Thus, \[ 2\sin A \cos A = m^2 - 1 \implies \sin A \cos A = \frac{m^2 - 1}{2} \] **Step 5: Substitute back into the equation for \( n \).** Now substituting \( \sin A \cos A \) back into the equation for \( n \): \[ n = m \left(1 - \frac{m^2 - 1}{2}\right) \] This simplifies to: \[ n = m \left(1 - \frac{m^2}{2} + \frac{1}{2}\right) = m \left(\frac{3}{2} - \frac{m^2}{2}\right) \] Thus, \[ n = \frac{m(3 - m^2)}{2} \] **Step 6: Rearranging the equation.** To find a polynomial equation, we can multiply both sides by 2: \[ 2n = m(3 - m^2) \] Rearranging gives: \[ m^3 - 3m + 2n = 0 \] ### Final Result: The relationship between \( m \) and \( n \) is: \[ m^3 - 3m + 2n = 0 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If sin A+cos A=m and sin^(3)A+cos^(3)A=n then

If sin A+cos A=m and sin^(3)A+cos^(3)A=n then (1)m^(3)-3m+n=0 (2) n^(3)-3n+ 2m=0(3)m^(3)-3m+2n=0 (4) m3+3m+2n=0

Prove that: (sinA - 2sin^(3)A)/(2 cos^(3)A - cosA) = tan A

If sinA - sqrt(6)cos A= sqrt(7) cosA , then the value of cosA + sqrt(6)sinA is:

If sinA+cosB=a and sinB+cosA=b then sin(A+B)=

sinA+cosA=sqrt2 then sin AxxcosA

If sinA, cosA and tanA are in G.P., then cos^(3)A+cos^(2)A=?

OBJECTIVE RD SHARMA-TRIGONOMETRIC RATIOS AND IDENTITIES-Exercise
  1. The value of sin""(2pi)/(7)+sin""(4pi)/(7)+sin""(8pi)/(7), is

    Text Solution

    |

  2. cos""(2pi)/(15)cos""(4pi)/(15)cos""(8pi)/(15)cos""(16pi)/(15)=(1)/(16)

    Text Solution

    |

  3. If sinA+cosA=m an sin^(3)A+cos^(3)A=n, then

    Text Solution

    |

  4. If cosA+cosB=m and sinA+sinB=n then sin(A+B)=

    Text Solution

    |

  5. If ltA lt(pi)/(6) and sinA+cosA=(sqrt7)/(2),"then" tan""(A)/(2)=

    Text Solution

    |

  6. The value of cos""(pi)/(11)+cos""(3pi)/(11)+cos""(5pi)/(11)+cos""(7pi)...

    Text Solution

    |

  7. If n=pi/(4alpha), then tanalpha tan 2alpha tan 3 alpha........tan(2n-1...

    Text Solution

    |

  8. the value of tan9^@-tan2 7^@-tan6 3^@+tan8 1^@ is equal to

    Text Solution

    |

  9. For x in R, tanx+1/2tan""(1)/(2^(2))tan""(x)/(2^(2))+...+(1)/(2^(n-1...

    Text Solution

    |

  10. If (tan3A)/(tanA)=k, then (sin3A)/(sinA)=

    Text Solution

    |

  11. If y=(sec^(2)theta-tantheta)/(sec^(2)theta+tantheta)'then

    Text Solution

    |

  12. If cosA=tanB, cos B=tanC, cosC=tanA, then sin A is equal to

    Text Solution

    |

  13. If A(1)A(2)A(3)A(4)A(5) be regular pentgon inscribed in anunit circle....

    Text Solution

    |

  14. If tanalpha is equal to the integral solution of the inequality 4x^2-1...

    Text Solution

    |

  15. If (x)/(cos theta)=(y)/(cos(theta-(2pi)/(2)))=(2)/(cos(theta+(2pi)/(3)...

    Text Solution

    |

  16. If cos A=3/4 then the value of sin(A/2) sin((5A)/2) is

    Text Solution

    |

  17. The minimum value of 9tan^2theta+4cot^2theta is

    Text Solution

    |

  18. If x(1),x(2),x(3),...,x(n) are in A.P. whose common difference is alph...

    Text Solution

    |

  19. If asin^2x+bcos^2x=c,bsin^2y+acos^2y=d and atanx=btany then a^2/b^2=.....

    Text Solution

    |

  20. If a (n+1)=sqrt((1)/(2)(1+a(n)))then cos((sqrt(1-a(0)^(2)))/(a(1)a(2)a...

    Text Solution

    |