Home
Class 12
MATHS
If sinA+cosA=m an sin^(3)A+cos^(3)A=n, t...

If `sinA+cosA=m an sin^(3)A+cos^(3)A=n,` then

A

`m^(3)-3m+n=0`

B

`n^(3)-3n+2m=0`

C

`m^(3)-3m+2n=0`

D

`m^(3)+3m+2n=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to establish a relationship between \( m \) and \( n \) given the equations: 1. \( \sin A + \cos A = m \) 2. \( \sin^3 A + \cos^3 A = n \) We will use the identity for the sum of cubes and some trigonometric identities to derive the required relationship. ### Step-by-Step Solution: **Step 1: Use the identity for the sum of cubes.** The identity for the sum of cubes states: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] In our case, let \( a = \sin A \) and \( b = \cos A \). Therefore, \[ \sin^3 A + \cos^3 A = (\sin A + \cos A)(\sin^2 A - \sin A \cos A + \cos^2 A) \] **Step 2: Substitute \( \sin A + \cos A \) with \( m \).** From the first equation, we know that: \[ \sin A + \cos A = m \] Now, we need to find \( \sin^2 A + \cos^2 A \) and \( \sin A \cos A \). Using the Pythagorean identity: \[ \sin^2 A + \cos^2 A = 1 \] **Step 3: Express \( \sin^2 A - \sin A \cos A + \cos^2 A \).** Now we can substitute into our equation: \[ \sin^3 A + \cos^3 A = m(1 - \sin A \cos A) \] **Step 4: Express \( \sin A \cos A \) in terms of \( m \).** Using the identity: \[ \sin A \cos A = \frac{1}{2} \sin(2A) \] We can also express \( \sin A \cos A \) in terms of \( m \): \[ \sin A \cos A = \frac{m^2 - 1}{2} \] This comes from the expansion of \( (\sin A + \cos A)^2 \): \[ m^2 = \sin^2 A + \cos^2 A + 2\sin A \cos A = 1 + 2\sin A \cos A \] Thus, \[ 2\sin A \cos A = m^2 - 1 \implies \sin A \cos A = \frac{m^2 - 1}{2} \] **Step 5: Substitute back into the equation for \( n \).** Now substituting \( \sin A \cos A \) back into the equation for \( n \): \[ n = m \left(1 - \frac{m^2 - 1}{2}\right) \] This simplifies to: \[ n = m \left(1 - \frac{m^2}{2} + \frac{1}{2}\right) = m \left(\frac{3}{2} - \frac{m^2}{2}\right) \] Thus, \[ n = \frac{m(3 - m^2)}{2} \] **Step 6: Rearranging the equation.** To find a polynomial equation, we can multiply both sides by 2: \[ 2n = m(3 - m^2) \] Rearranging gives: \[ m^3 - 3m + 2n = 0 \] ### Final Result: The relationship between \( m \) and \( n \) is: \[ m^3 - 3m + 2n = 0 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If sinA+cosA=m and sin^(3)A+cos^(3)A=n then the value of m^(3)-3m+2n is

If sin A+cos A=m and sin^(3)A+cos^(3)A=n then

Knowledge Check

  • If sin A+cos A=m and sin^3 A+cos^3 A=n , then

    A
    `m^3-3m+n=0`
    B
    `n^3-3n+2m=0`
    C
    `m^3-3m+2n=0`
    D
    `m^3+3m+2n=0`
  • If sinA - sqrt(6)cos A= sqrt(7) cosA , then the value of cosA + sqrt(6)sinA is:

    A
    `sqrt(6)sinA`
    B
    `sqrt(7)sinA`
    C
    `sqrt(6)cosA`
    D
    `sqrt(7)cosA`
  • If sinA+cosA=x . sin^(6)A+cos^(6)A=(1)/(4)[4-3(x^(2)-1)^(2)] is true for all x^(2)=?

    A
    A) Rs. 5000
    B
    B) Rs. 6200
    C
    C) Rs. 8100
    D
    D) Rs. 7600
  • Similar Questions

    Explore conceptually related problems

    If sin A+cos A=m and sin^(3)A+cos^(3)A=n then (1)m^(3)-3m+n=0 (2) n^(3)-3n+ 2m=0(3)m^(3)-3m+2n=0 (4) m3+3m+2n=0

    Prove that: (sinA - 2sin^(3)A)/(2 cos^(3)A - cosA) = tan A

    If sinA+cosB=a and sinB+cosA=b then sin(A+B)=

    sinA+cosA=sqrt2 then sin AxxcosA

    If sinA, cosA and tanA are in G.P., then cos^(3)A+cos^(2)A=?