Home
Class 12
MATHS
sum(r=1)^(n-1)cos^(2)""(rpi)/(n) is equa...

`sum_(r=1)^(n-1)cos^(2)""(rpi)/(n)` is equal to

A

`n/2`

B

`(n-1)/(2)`

C

`n/2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \[ \sum_{r=1}^{n-1} \cos^2\left(\frac{r\pi}{n}\right), \] we can follow these steps: ### Step 1: Use the identity for cosine squared We know that \[ \cos^2 x = \frac{1 + \cos(2x)}{2}. \] Using this identity, we can rewrite the summation: \[ \sum_{r=1}^{n-1} \cos^2\left(\frac{r\pi}{n}\right) = \sum_{r=1}^{n-1} \frac{1 + \cos\left(\frac{2r\pi}{n}\right)}{2}. \] ### Step 2: Simplify the summation We can factor out the \( \frac{1}{2} \): \[ = \frac{1}{2} \sum_{r=1}^{n-1} \left(1 + \cos\left(\frac{2r\pi}{n}\right)\right) = \frac{1}{2} \left( \sum_{r=1}^{n-1} 1 + \sum_{r=1}^{n-1} \cos\left(\frac{2r\pi}{n}\right) \right). \] ### Step 3: Evaluate the first summation The first summation \( \sum_{r=1}^{n-1} 1 \) counts the number of terms from 1 to \( n-1 \), which is \( n-1 \): \[ \sum_{r=1}^{n-1} 1 = n - 1. \] ### Step 4: Evaluate the second summation The second summation \( \sum_{r=1}^{n-1} \cos\left(\frac{2r\pi}{n}\right) \) can be evaluated using the formula for the sum of cosines: \[ \sum_{r=0}^{n-1} \cos\left(\alpha + r\beta\right) = \frac{\sin\left(\frac{n\beta}{2}\right) \cos\left(\alpha + \frac{(n-1)\beta}{2}\right)}{\sin\left(\frac{\beta}{2}\right)}. \] In our case, \( \alpha = 0 \) and \( \beta = \frac{2\pi}{n} \): \[ \sum_{r=0}^{n-1} \cos\left(\frac{2r\pi}{n}\right) = \frac{\sin(n\cdot\frac{\pi}{n}) \cos\left(\frac{(n-1)\cdot\frac{2\pi}{n}}{2}\right)}{\sin\left(\frac{\pi}{n}\right)} = \frac{\sin(\pi) \cos\left(\frac{(n-1)\pi}{n}\right)}{\sin\left(\frac{\pi}{n}\right)} = 0. \] Thus, \[ \sum_{r=1}^{n-1} \cos\left(\frac{2r\pi}{n}\right) = -1 \quad (\text{since we need to exclude } r=0). \] ### Step 5: Combine the results Now substituting back into our expression: \[ \sum_{r=1}^{n-1} \cos^2\left(\frac{r\pi}{n}\right) = \frac{1}{2} \left( (n - 1) + (-1) \right) = \frac{1}{2} (n - 2). \] ### Final Result Thus, we have: \[ \sum_{r=1}^{n-1} \cos^2\left(\frac{r\pi}{n}\right) = \frac{n - 2}{2}. \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

sum_(r=0)^(n) sin^(2)""(rpi)/(n) is equal to

The value of sum_(r=1)^(n)(-1)^(r+1)(^nCr)/(r+1) is equal to a.-(1)/(n+1) b.(1)/(n) c.(1)/(n+1) d.(n)/(n+1)

The value of lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)((r)/(n+r)) is equal to

The value of sum_(x=1)^(n)(-1)^(r+1)(C(n,r))/(r+1) is equal to

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

lim_(n to oo) " " sum_(r=2n+1)^(3n) (n)/(r^(2)-n^(2)) is equal to

If sum_(r=m)^(n)hat rC_(m)=^(n+1)C_(m+1), then sum_(r=m)^(n)(n-r+1)^(r)C_(m) is equal to sum_(r=m)^(n)(n-r+1)^(r)C_(m) is equal to

OBJECTIVE RD SHARMA-TRIGONOMETRIC RATIOS AND IDENTITIES-Exercise
  1. The value of cos12^(@)cos24^(@)cos36^(@)cos48^(@)cos72^(@)cos84^(@), i...

    Text Solution

    |

  2. The value of sin""(15pi)/(32)sin""(7pi)/(16)sin""(3pi)/(8), is

    Text Solution

    |

  3. sum(r=1)^(n-1)cos^(2)""(rpi)/(n) is equal to

    Text Solution

    |

  4. The value of cot theta-tantheta-2tan2theta-4tan4theta-8cot8theta, is

    Text Solution

    |

  5. If cos(x-y), cosx and cos(x+y) are in H.P., then cos x sec (y/2) equal...

    Text Solution

    |

  6. The value of tan20^(@)+2 tan50^(@)-tan70^(@), is

    Text Solution

    |

  7. If cosA+cosB+cosC=0, then cos3A+cos3B+cos3C is equal to

    Text Solution

    |

  8. Minimum value of cos2theta+costheta for all real value of theta is

    Text Solution

    |

  9. cos9^@-sin9^@=

    Text Solution

    |

  10. If y=(sin 3theta)/(sintheta), theta nen pi, then

    Text Solution

    |

  11. If tan(picostheta)=cot(pisintheta),0lt thetalt(3pi)/(4), then sin(thet...

    Text Solution

    |

  12. If tan(picostheta)=cot(pisintheta),"then the value of"sin(theta+(pi)/(...

    Text Solution

    |

  13. 1+sinx+sin^(2)x+..."to"oo=2sqrt3 + 4, if x = ?

    Text Solution

    |

  14. If sin(x-y)=cos(x+y)=1/2, the value of x and y lyingbetween 0^(@)and 9...

    Text Solution

    |

  15. If alpha and beta be between 0 and (pi)/(2)and if cos(alpha+beta)=(12)...

    Text Solution

    |

  16. If tan (alpha/2) and tan beta/2are the roots of the equation 8x^2-26x+...

    Text Solution

    |

  17. 2x^(2) + 3x - alpha - 0 " has roots "-2 and beta " while the equation ...

    Text Solution

    |

  18. If A+B+C=0, then the value of sum cot (B+C-A) cot (C+A-B) is equal to

    Text Solution

    |

  19. In (0,pi//2)tan^(m)x+cot^(m)x attains

    Text Solution

    |

  20. For -(pi)/(2)lttheta(pi)/(2),(sintheta+sin2theta)/(1+costheta+cos2thet...

    Text Solution

    |