Home
Class 12
MATHS
sum(r=1)^(n-1)cos^(2)""(rpi)/(n) is equa...

`sum_(r=1)^(n-1)cos^(2)""(rpi)/(n)` is equal to

A

`n/2`

B

`(n-1)/(2)`

C

`n/2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \[ \sum_{r=1}^{n-1} \cos^2\left(\frac{r\pi}{n}\right), \] we can follow these steps: ### Step 1: Use the identity for cosine squared We know that \[ \cos^2 x = \frac{1 + \cos(2x)}{2}. \] Using this identity, we can rewrite the summation: \[ \sum_{r=1}^{n-1} \cos^2\left(\frac{r\pi}{n}\right) = \sum_{r=1}^{n-1} \frac{1 + \cos\left(\frac{2r\pi}{n}\right)}{2}. \] ### Step 2: Simplify the summation We can factor out the \( \frac{1}{2} \): \[ = \frac{1}{2} \sum_{r=1}^{n-1} \left(1 + \cos\left(\frac{2r\pi}{n}\right)\right) = \frac{1}{2} \left( \sum_{r=1}^{n-1} 1 + \sum_{r=1}^{n-1} \cos\left(\frac{2r\pi}{n}\right) \right). \] ### Step 3: Evaluate the first summation The first summation \( \sum_{r=1}^{n-1} 1 \) counts the number of terms from 1 to \( n-1 \), which is \( n-1 \): \[ \sum_{r=1}^{n-1} 1 = n - 1. \] ### Step 4: Evaluate the second summation The second summation \( \sum_{r=1}^{n-1} \cos\left(\frac{2r\pi}{n}\right) \) can be evaluated using the formula for the sum of cosines: \[ \sum_{r=0}^{n-1} \cos\left(\alpha + r\beta\right) = \frac{\sin\left(\frac{n\beta}{2}\right) \cos\left(\alpha + \frac{(n-1)\beta}{2}\right)}{\sin\left(\frac{\beta}{2}\right)}. \] In our case, \( \alpha = 0 \) and \( \beta = \frac{2\pi}{n} \): \[ \sum_{r=0}^{n-1} \cos\left(\frac{2r\pi}{n}\right) = \frac{\sin(n\cdot\frac{\pi}{n}) \cos\left(\frac{(n-1)\cdot\frac{2\pi}{n}}{2}\right)}{\sin\left(\frac{\pi}{n}\right)} = \frac{\sin(\pi) \cos\left(\frac{(n-1)\pi}{n}\right)}{\sin\left(\frac{\pi}{n}\right)} = 0. \] Thus, \[ \sum_{r=1}^{n-1} \cos\left(\frac{2r\pi}{n}\right) = -1 \quad (\text{since we need to exclude } r=0). \] ### Step 5: Combine the results Now substituting back into our expression: \[ \sum_{r=1}^{n-1} \cos^2\left(\frac{r\pi}{n}\right) = \frac{1}{2} \left( (n - 1) + (-1) \right) = \frac{1}{2} (n - 2). \] ### Final Result Thus, we have: \[ \sum_{r=1}^{n-1} \cos^2\left(\frac{r\pi}{n}\right) = \frac{n - 2}{2}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(r=1)^(n)(-1)^(r+1)(^nCr)/(r+1) is equal to a.-(1)/(n+1) b.(1)/(n) c.(1)/(n+1) d.(n)/(n+1)

The value of lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)((r)/(n+r)) is equal to

Knowledge Check

  • sum_(r=0)^(n) sin^(2)""(rpi)/(n) is equal to

    A
    `(n+1)/(2)`
    B
    `(n-1)/(2)`
    C
    `n/2`
    D
    none of these
  • sum_(r=1)^(n-1)sin^(2)"" (r pi )/( n ) equals

    A
    `(n)/(2)`
    B
    `(n-2)/( 2)`
    C
    `(n-1)/(2)`
    D
    none
  • sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

    A
    0
    B
    `(1)/(2)(underset(r=1)overset(n)sumr^(2)+underset(r=1)overset(n)sumr)`
    C
    `(1)/(2){underset(r=1)overset(n)sumr^(2)-underset(r=1)overset(n)sumr}`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    The value of sum_(x=1)^(n)(-1)^(r+1)(C(n,r))/(r+1) is equal to

    If sum_(r=m)^(n)hat rC_(m)=^(n+1)C_(m+1), then sum_(r=m)^(n)(n-r+1)^(r)C_(m) is equal to sum_(r=m)^(n)(n-r+1)^(r)C_(m) is equal to

    lim_(n to oo) " " sum_(r=2n+1)^(3n) (n)/(r^(2)-n^(2)) is equal to

    lim_(n to oo) sum_(x=1)^(n) (2r-1)/(2^(r )) is equal to -

    If a_(n)=sum_(r=0)^(n) (1)/(""^(n)C_(r )) , then sum_(r=0)^(n) (r )/(""^(n)C_(r )) is equal to