Home
Class 12
MATHS
If 3 tan (theta-15^(@))=tan(theta+15^(@)...

If `3 tan (theta-15^(@))=tan(theta+15^(@)), 0lt thetalt pi,then theta=`

A

`(pi)/(2)`

B

`(pi)/(4)`

C

`(3pi)/(4)`

D

`(pi)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 3 \tan(\theta - 15^\circ) = \tan(\theta + 15^\circ) \), we can follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ 3 \tan(\theta - 15^\circ) = \tan(\theta + 15^\circ) \] ### Step 2: Use the tangent addition and subtraction formulas Recall the tangent addition and subtraction formulas: \[ \tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \] Let \( A = \theta \) and \( B = 15^\circ \). Therefore, we can express: \[ \tan(\theta + 15^\circ) = \frac{\tan \theta + \tan 15^\circ}{1 - \tan \theta \tan 15^\circ} \] \[ \tan(\theta - 15^\circ) = \frac{\tan \theta - \tan 15^\circ}{1 + \tan \theta \tan 15^\circ} \] ### Step 3: Substitute the formulas into the equation Substituting these into the equation gives: \[ 3 \cdot \frac{\tan \theta - \tan 15^\circ}{1 + \tan \theta \tan 15^\circ} = \frac{\tan \theta + \tan 15^\circ}{1 - \tan \theta \tan 15^\circ} \] ### Step 4: Cross-multiply Cross-multiplying results in: \[ 3(\tan \theta - \tan 15^\circ)(1 - \tan \theta \tan 15^\circ) = (\tan \theta + \tan 15^\circ)(1 + \tan \theta \tan 15^\circ) \] ### Step 5: Expand both sides Expanding both sides: \[ 3(\tan \theta - \tan 15^\circ - \tan \theta \tan 15^\circ \tan \theta + \tan 15^\circ \tan^2 \theta) = \tan \theta + \tan 15^\circ + \tan \theta \tan^2 15^\circ + \tan^2 \theta \tan 15^\circ \] ### Step 6: Rearranging the equation Rearranging the equation to isolate terms involving \( \tan \theta \) gives us a polynomial in \( \tan \theta \). ### Step 7: Solve for \( \tan \theta \) This will lead to a quadratic equation in terms of \( \tan \theta \). Solving this quadratic equation will yield the possible values for \( \tan \theta \). ### Step 8: Find \( \theta \) Once we have the values for \( \tan \theta \), we can find \( \theta \) by taking the arctangent and ensuring that \( 0 < \theta < \pi \). ### Final Answer After solving the quadratic equation and applying the arctangent, we will find the value(s) of \( \theta \) that satisfy the original equation. ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Exercise|190 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If 3tan(theta-15^(@))=tan(theta+15^(0))0

Solve: 3tan(theta-15^(@))=tan(theta+15^(@))

Knowledge Check

  • If 3 tan ( theta -15^@) =- tan ( theta + 15^@) , then theta =

    A
    `n pi + pi/4`
    B
    `n pi + pi/8`
    C
    `n pi + pi/3`
    D
    none
  • If 3 tan (theta - 15^@) = tan (theta + 15^@) , then the general value of theta is

    A
    `npi + (-1)^(n) cdot (pi//4)`
    B
    `n(pi//2) + (-1)^(n) cdot (pi//4)`
    C
    `n(pi//2) + (-1)^(n) cdot (pi//6)`
    D
    none of these
  • If tan(picostheta)=cot(pisintheta),0lt thetalt(3pi)/(4), then sin(theta+(pi)/(4)) equals

    A
    `(1)/(sqrt2)`
    B
    `1/2`
    C
    `(1)/(2sqrt2)`
    D
    `sqrt2`
  • Similar Questions

    Explore conceptually related problems

    If 3tan(theta-15^(@))=tan(theta+15^(0)), then theta is equal to n in Z ) pi pi+(pi)/(4) (b) n pi+(pi)/(8)n pi+(pi)/(3) (d) none of these

    If tan theta + sec theta = sqrt3, 0 lt theta le pi , then theta =

    If tan theta + sec theta = sqrt3, 0 lt theta le pi , then theta =

    If tan2theta.tan3theta=1 , where 0^(@)lt theta lt90^(@) then the value of theta is

    If tan8 theta = cot 2 theta , where 0 lt 8 theta lt pi/2 , then what is the value of tan 5 theta ?