Home
Class 11
MATHS
Find the value of i^(2)+(-i)^(4)-i^(6)....

Find the value of `i^(2)+(-i)^(4)-i^(6)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( i^2 + (-i)^4 - i^6 \), we will calculate each term step by step. ### Step 1: Calculate \( i^2 \) We know that: \[ i = \sqrt{-1} \] Thus, \[ i^2 = -1 \] ### Step 2: Calculate \( (-i)^4 \) First, we can express \( -i \) as: \[ -i = -1 \cdot i \] Now, we can calculate \( (-i)^4 \): \[ (-i)^4 = ((-1) \cdot i)^4 = (-1)^4 \cdot i^4 \] Since \( (-1)^4 = 1 \) and \( i^4 = 1 \) (because \( i^4 = (i^2)^2 = (-1)^2 = 1 \)), we have: \[ (-i)^4 = 1 \cdot 1 = 1 \] ### Step 3: Calculate \( -i^6 \) Next, we calculate \( i^6 \): \[ i^6 = i^{4+2} = i^4 \cdot i^2 \] From our previous calculations, we know \( i^4 = 1 \) and \( i^2 = -1 \): \[ i^6 = 1 \cdot (-1) = -1 \] Thus, \[ -i^6 = -(-1) = 1 \] ### Step 4: Combine the results Now we can combine all the calculated values: \[ i^2 + (-i)^4 - i^6 = -1 + 1 - (-1) \] Substituting the values we found: \[ = -1 + 1 + 1 \] \[ = 1 \] ### Final Answer The value of \( i^2 + (-i)^4 - i^6 \) is \( \boxed{1} \). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise NCERT EXERCISE 5.1|14 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise NCERT EXERCISE 5.2|8 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS TRUE/FALSE QUESTIONS (C)|5 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

Find the value of i^(-4)

1) Find the value of i^(i)

Knowledge Check

  • Find the value of (1+ i)^(6) + (1-i)^(6)

    A
    `16i`
    B
    `0`
    C
    `-16i`
    D
    `1`
  • Similar Questions

    Explore conceptually related problems

    Find the value of 1+i^(2)+i^(4)+i^(6)+...+i^(2n)

    Find the value of 1+i^(2)+i^(4)+i^(6)+...+i^(2n), where i=sqrt-1 and nEN.

    Find the value of i+i^(2)+i^(3)+i^(4)

    Find the value of (1-i)^(4)

    Find the value of 1+i^(2)+i^(4)+i^(6)+i^(8)+...+i^(24)

    Find the value of 1+i^(2)+i^(4)+i^(6)+i^(8)+...+i^(24)

    Find the value of (3+(2)/(i))(i^(6)-i^(7))(1+i^(11))