Home
Class 11
MATHS
If (x+iy)^(1//3)=a+ib, where x,y,a,binR ...

If `(x+iy)^(1//3)=a+ib`, where x,y,a,b`inR` show that
`(x)/(a)-(y)/(b)=-2(a^(2)+b^(2))`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ (x + iy)^{1/3} = a + ib \] We will cube both sides to eliminate the cube root: \[ x + iy = (a + ib)^3 \] Next, we expand the right-hand side using the binomial expansion: \[ (a + ib)^3 = a^3 + 3a^2(ib) + 3a(ib)^2 + (ib)^3 \] Calculating each term: 1. \( (ib)^3 = i^3b^3 = -ib^3 \) 2. \( 3a(ib)^2 = 3a(i^2b^2) = 3a(-b^2) = -3ab^2 \) 3. \( 3a^2(ib) = 3a^2ib \) Putting it all together, we have: \[ x + iy = a^3 - 3ab^2 + i(3a^2b - b^3) \] Now, we can equate the real and imaginary parts: 1. Real part: \( x = a^3 - 3ab^2 \) 2. Imaginary part: \( y = 3a^2b - b^3 \) Next, we need to find the expression \( \frac{x}{a} - \frac{y}{b} \): \[ \frac{x}{a} = \frac{a^3 - 3ab^2}{a} = a^2 - 3b^2 \] \[ \frac{y}{b} = \frac{3a^2b - b^3}{b} = 3a^2 - b^2 \] Now, substituting these into the expression: \[ \frac{x}{a} - \frac{y}{b} = (a^2 - 3b^2) - (3a^2 - b^2) \] Simplifying this gives: \[ \frac{x}{a} - \frac{y}{b} = a^2 - 3b^2 - 3a^2 + b^2 = -2a^2 - 2b^2 \] Thus, we can write: \[ \frac{x}{a} - \frac{y}{b} = -2(a^2 + b^2) \] This completes the proof.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise EXERCISE|10 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise REVISION EXERCISE|12 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise MISCELLANEOUS EXERCISE ON CHAPTER|20 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

If (x+iy)^(1/3)=a+ib,x,y,ab in R. Show that (x)/(a)+(y)/(b)=4(a^(2)-b^(2))( ii) (x)/(a)-(y)/(b)=2(a^(2)+b^(2))

If (x+iy)^((1)/(3))=a+ib where x,y,a,b are real numbers such that (x)/(a)-(y)/(b)=k(a^(2)+b^(2)) then the value of k is

(x+iy)^((1)/(3))=(a+ib) then prove that ((x)/(a)+(y)/(b))=4(a^(2)-b^(2))

If z = x + iy, z^(1//3) = a - i b , and (x)/( a) - (y)/( b) = lambda ( a^(2) - b^(2)) " then " lambda =

If (x+iy)^(1//3)=a+ib,"where"i=sqrt(-1),then ((x)/(a)+(y)/(b)) is equal to

(x+iy)^((1)/(3))=a+ibthenprovethat(x)/(a)+(y)/(b)=4(a^(2)-b^(2))

If (x+iy)^(3)=u+iv then show that (u)/(x)+(v)/(y)=4(x^(2)-y^(2))

If (x+iy)^(3)=u+iv, then show that (u)/(x)+(v)/(y)=4(x^(2)-y^(2))

If (x+iy)=a+ib then (x)/(a)+(y)/(b)=

If z=x+iy,z^((1)/(3))=a-ib and backslash(x)/(a)-(y)/(b)=lambda(a^(2)-b^(2)) then lambda is equal to