Home
Class 11
MATHS
If (|x-1|)/(x-2)gt0, then:...

If `(|x-1|)/(x-2)gt0`, then:

A

`x in[2,oo)`

B

`x in(2,oo)`

C

`x in(-oo,2)`

D

`x in(-oo,2]`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \(\frac{|x-1|}{x-2} > 0\), we will analyze the expression step by step. ### Step 1: Understand the Absolute Value The expression involves an absolute value, which we need to break down into cases based on the value of \(x\). - **Case 1:** When \(x - 1 \geq 0\) (i.e., \(x \geq 1\)), then \(|x - 1| = x - 1\). - **Case 2:** When \(x - 1 < 0\) (i.e., \(x < 1\)), then \(|x - 1| = -(x - 1) = 1 - x\). ### Step 2: Analyze Case 1 (\(x \geq 1\)) For \(x \geq 1\), the inequality becomes: \[ \frac{x - 1}{x - 2} > 0 \] This fraction is positive when both the numerator and denominator are either both positive or both negative. 1. **Numerator:** \(x - 1 > 0 \Rightarrow x > 1\) 2. **Denominator:** \(x - 2 > 0 \Rightarrow x > 2\) Now, we find the critical points: - \(x = 1\) (numerator is zero) - \(x = 2\) (denominator is zero) ### Step 3: Test Intervals for Case 1 We will test the intervals based on the critical points \(1\) and \(2\): - **Interval 1:** \( (-\infty, 1) \) - **Interval 2:** \( (1, 2) \) - **Interval 3:** \( (2, \infty) \) Testing these intervals: - For \(x = 0\) (in \((- \infty, 1)\)): \[ \frac{0 - 1}{0 - 2} = \frac{-1}{-2} = \frac{1}{2} > 0 \quad \text{(positive)} \] - For \(x = 1.5\) (in \((1, 2)\)): \[ \frac{1.5 - 1}{1.5 - 2} = \frac{0.5}{-0.5} = -1 < 0 \quad \text{(negative)} \] - For \(x = 3\) (in \((2, \infty)\)): \[ \frac{3 - 1}{3 - 2} = \frac{2}{1} = 2 > 0 \quad \text{(positive)} \] ### Step 4: Conclusion for Case 1 From the testing: - The inequality is satisfied in the intervals \((- \infty, 1)\) and \((2, \infty)\). ### Step 5: Analyze Case 2 (\(x < 1\)) For \(x < 1\), the inequality becomes: \[ \frac{1 - x}{x - 2} > 0 \] Again, we analyze when both the numerator and denominator are positive or both are negative. 1. **Numerator:** \(1 - x > 0 \Rightarrow x < 1\) (always true in this case) 2. **Denominator:** \(x - 2 < 0 \Rightarrow x < 2\) (always true since \(x < 1\)) ### Step 6: Test Intervals for Case 2 We only need to check if this inequality holds for \(x < 1\): - For \(x = 0\): \[ \frac{1 - 0}{0 - 2} = \frac{1}{-2} < 0 \quad \text{(negative)} \] ### Step 7: Conclusion for Case 2 The inequality is not satisfied for any \(x < 1\). ### Final Solution Combining both cases: - From Case 1, the solution is \( (-\infty, 1) \cup (2, \infty) \). - From Case 2, there are no valid solutions. Thus, the solution set is: \[ \boxed{(2, \infty)} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHECH YOUR UNDERSTANDING|10 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING|10 Videos
  • MATHEMATICAL INDUCTION

    MODERN PUBLICATION|Exercise CHAPTER TEST 4|12 Videos

Similar Questions

Explore conceptually related problems

If (x -1) (x^(2) + 1) gt 0 , then find the value of sin((1)/(2) tan^(-1).(2x)/(1 - x^(2)) - tan^(-1) x)

Solve log_(2).(x-1)/(x-2) gt 0 .

Knowledge Check

  • Given that , tan^(-1) ((2x)/(1-x^(2))) = {{:(2 tan^(-1) x"," |x| le 1),(-pi +2 tan^(-1)x","x gt 1),(pi+2 tan^(-1)x"," x lt -1):} sin^(-1)((2x)/(1+x^(2))) ={{:(2 tan^(-1)x","|x|le1),(pi -2 tan^(-1)x","x gt 1 and ),(-(pi+2tan^(-1))","x lt -1):} sin^(-1) x + cos^(-1) x = pi//2 " for " - 1 le x le 1 If (x -1)(x^(2) +1) gt 0", then " sin(1/2 tan^(-1) .(2x)/(1-x^(2)) tan^(-1) x) is equal to

    A
    1
    B
    `1/sqrt2`
    C
    `-1`
    D
    None of these
  • Let f(x) = tan^(-1) x and g(x) = (x)/(1 + x^(2)), x gt 0 then

    A
    `f(x) lt g (x), " on "(0, oo)`
    B
    `f(x) le g (x) " on "[1, oo)`
    C
    `g (x) lt f(x) " on "(0, oo)`
    D
    none of these
  • If log_(1//8)(log_(4)(x^(2)-5))gt0 , then ______.

    A
    `x in (-oo, -3)uu (3, oo)`
    B
    `x in (-oo, -sqrt(6)) uu (sqrt(6), oo)`
    C
    `x in (-3, sqrt(6)) uu (sqrt(6), oo)`
    D
    `x in (-3, -sqrt(6)) uu (sqrt(6), 3)`
  • Similar Questions

    Explore conceptually related problems

    Find the solution set of (x^(2))/(x-3)gt0 .

    Find the solution set of (x-4)(x^(2)-2x+1)gt0 .

    Solve (x-1)(x-2)(1-2x) gt 0 .

    Let f(x)=x^(3)+ax^(2)+bx+c be the given cubic polynomial and f(x)=0 be the corresponding cubic equation, where a, b, c in R. Now, f'(x)=3x^(2)+2ax+b Let D=4a^(2)-12b=4(a^(2)-3b) be the discriminant of the equation f'(x)=0 . If D=4(a^(2)-3b)gt0 and f(x_(1)).f(x_(2))gt0 where x_(1),x_(2) are the roots of f'(x), then

    Solve (x-1 )(x-2)(1-2x) gt 0