Home
Class 12
MATHS
The sum of the series 1+(1)/(2) ""^(n) C...

The sum of the series `1+(1)/(2) ""^(n) C_1 + (1)/(3) ""^(n) C_(2) + ….+ (1)/(n+1) ""^(n) C_(n)` is equal to

A

`(2^(n+1) -1)/(n+1)`

B

`(3(2^(n)-1))/(2n)`

C

`^(2^(n)+1)/(n+1)`

D

`(2^(n) +1)/(2n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the series \[ S = 1 + \frac{1}{2} \binom{n}{1} + \frac{1}{3} \binom{n}{2} + \ldots + \frac{1}{n+1} \binom{n}{n}, \] we can use the concept of integration in relation to binomial coefficients. ### Step 1: Recognize the Binomial Expansion The binomial expansion of \((1 + x)^n\) is given by: \[ (1 + x)^n = \sum_{r=0}^{n} \binom{n}{r} x^r. \] ### Step 2: Integrate the Binomial Expansion To incorporate the denominators in our series, we can integrate both sides of the binomial expansion from \(0\) to \(1\): \[ \int_0^1 (1 + x)^n \, dx = \int_0^1 \sum_{r=0}^{n} \binom{n}{r} x^r \, dx. \] ### Step 3: Calculate the Left-Hand Side The left-hand side can be computed as follows: \[ \int_0^1 (1 + x)^n \, dx = \left[ \frac{(1 + x)^{n+1}}{n + 1} \right]_0^1 = \frac{(1 + 1)^{n+1}}{n + 1} - \frac{(1 + 0)^{n+1}}{n + 1} = \frac{2^{n+1}}{n + 1} - \frac{1}{n + 1}. \] This simplifies to: \[ \frac{2^{n+1} - 1}{n + 1}. \] ### Step 4: Calculate the Right-Hand Side Now, we calculate the right-hand side: \[ \int_0^1 \sum_{r=0}^{n} \binom{n}{r} x^r \, dx = \sum_{r=0}^{n} \binom{n}{r} \int_0^1 x^r \, dx = \sum_{r=0}^{n} \binom{n}{r} \cdot \frac{1}{r + 1}. \] This means: \[ \sum_{r=0}^{n} \frac{\binom{n}{r}}{r + 1} = S. \] ### Step 5: Equate Both Sides We can now equate the two sides: \[ S = \frac{2^{n+1} - 1}{n + 1}. \] ### Final Result Thus, the sum of the series is: \[ \boxed{\frac{2^{n+1} - 1}{n + 1}}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BINOMIAL THEOREM

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY 3 : One or More than One Option Correct Type (2 Marks) )|10 Videos
  • BINOMIAL THEOREM

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|13 Videos
  • BINOMIAL THEOREM

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|13 Videos
  • APPLICATION OF INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|3 Videos
  • CIRCLES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More One Option Correct Type)|2 Videos

Similar Questions

Explore conceptually related problems

Let n in N and [x] denote the greatest integer less than or equal to x. If the sum of (n + 1) terms ""^(n) C_(0) , 3 .""^(n)C_(1) , 5. :""^(n) C_(2) , & .""^(n)C_(3) is equal to 2 ^(100) . 101 then 2 [(n-1)/(2)] is equal to _________

Find .^(n)C_(1)-(1)/(2).^(n)C_(2)+(1)/(3).^(n)C_(3)- . . . +(-1)^(n-1)(1)/(n).^(n)C_(n)

Knowledge Check

  • sum_(n=1)^(oo) (""^(n)C_(0) + ""^(n)C_(1) + .......""^(n)C_(n))/(n!) is equal to

    A
    `e^(2)`
    B
    `e^(2) + 1`
    C
    `e^(2) - 1`
    D
    `e^(-2)`
  • If n in N, n > 1 , then value of E= a - ""^(n)C_(1) (a-1) + ""^(n)C_(2) (a -2)+ ... + (- 1)^(n) (a-n) (""^(n)C_(n)) is

    A
    a
    B
    0
    C
    `a^(2)`
    D
    `2^(n)`
  • The sum of the series sum_(r=1)^(n) (-1)^(r-1).""^(n)C_(r)(a-r), n gt 1 is equal to :

    A
    `n.2^(n+1)+a`
    B
    0
    C
    a
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    C_(0)-3C_(1)+5c_(3)+....+(-1)^(n)(2n+1)C_(n) is equal to

    Find the sum .^(n)C_(0) + 2 xx .^(n)C_(1) + xx .^(n)C_(2) + "….." + (n+1) xx .^(n)C_(n) .

    (1+n)C_(0)+(1+n)C_(2)+(1+n)C_(4)+ is equal to

    The value of the sum of the series 3.""^(n)C_(0)-8" "^(n)C_(1)+13" "^(n)C_(2)-18" "^(n)C_(3)+ …….. upto (n+1) terms is

    The sum of sum_(n=1)^(oo) ""^(n)C_(2) . (3^(n-2))/(n!) equal