Home
Class 12
MATHS
y =[ log(x) (log (e) x ) ](log (e) x ) t...

`y =[ log_(x) (log _(e) x ) ](log _(e) x )` then `(dy)/(dx)` equals

A

`(1)/( x log _(x) log _(x) x)`

B

`(1)/(x log _(e) x )`

C

0

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \left[ \log_{x}(\log_{e} x) \right] (\log_{e} x) \), we will follow these steps: ### Step 1: Rewrite the function using properties of logarithms We know that: \[ \log_{a}(b) = \frac{\log_{e}(b)}{\log_{e}(a)} \] Thus, we can rewrite \( \log_{x}(\log_{e} x) \) as: \[ \log_{x}(\log_{e} x) = \frac{\log_{e}(\log_{e} x)}{\log_{e}(x)} \] Now substituting this back into the equation for \( y \): \[ y = \left( \frac{\log_{e}(\log_{e} x)}{\log_{e}(x)} \right) (\log_{e} x) \] The \( \log_{e}(x) \) terms will cancel out: \[ y = \log_{e}(\log_{e} x) \] ### Step 2: Differentiate using the chain rule Now we need to differentiate \( y \): \[ y = \log_{e}(\log_{e} x) \] Using the chain rule, the derivative of \( \log_{e}(u) \) is \( \frac{1}{u} \cdot \frac{du}{dx} \). Here, \( u = \log_{e} x \). First, differentiate the outer function: \[ \frac{dy}{du} = \frac{1}{\log_{e} x} \] Now differentiate the inner function \( u = \log_{e} x \): \[ \frac{du}{dx} = \frac{1}{x} \] ### Step 3: Combine the derivatives Now we can combine these results: \[ \frac{dy}{dx} = \frac{1}{\log_{e} x} \cdot \frac{1}{x} \] Thus, we have: \[ \frac{dy}{dx} = \frac{1}{x \log_{e} x} \] ### Final Result The derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{1}{x \log_{e} x} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|5 Videos
  • DIFFERENTIAL EQUATIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|19 Videos

Similar Questions

Explore conceptually related problems

If y=e^(log_(e)(1+e^(log_(e)x))) then (dy)/(dx)=

I = int {log _(e) log _(e) x + (1)/( (log _(e) x ) ^(2))} dx is equal to:

Knowledge Check

  • If y = x^(log x) , then (dy)/(dx) equals

    A
    `log x x^(log x - 1)`
    B
    `x^(log x -1) . 2 log x`
    C
    `x log (log x)`
    D
    `1/(x log x) cdot x^(log x - 1)`
  • If y=log _(e^(x) ) (log x ),then (dy)/(dx)

    A
    ` (2)/(xlogx ) `
    B
    ` (-2)/(xlogx ) `
    C
    ` (1)/(2xlogx ) `
    D
    ` (-1)/(2xlogx ) `
  • If y=e^(log_(e)x)," then "(dy)/(dx)=

    A
    0
    B
    x
    C
    e
    D
    1
  • Similar Questions

    Explore conceptually related problems

    if y=log_(2)log_(e)xx then (dy)/(dx) is equal to

    If y=x^(log(log x)); then (dy)/(dx) is

    If y = e^(log x ) , then ( dy)/(dx)

    If y= e^(log (log x )) ,then (dy)/(dx) =

    If y=tan ^(-1) ((log (ex))/( log ((e)/( x)))) ,then (dy)/(dx) =