Home
Class 12
MATHS
The value of the integral int(-1)^(1){(x...

The value of the integral `int_(-1)^(1){(x^(2013))/(e^(|x|)(x^(2)+cosx))+(1)/(e^(|x|))}dx` is equal to

A

0

B

`1-e^(-1)`

C

`2e^(-1)`

D

`2(1-e^(-1))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-1}^{1} \left( \frac{x^{2013}}{e^{|x|}(x^2 + \cos x)} + \frac{1}{e^{|x|}} \right) dx, \] we can break this integral into two parts and use the properties of definite integrals. ### Step 1: Split the Integral We can express the integral as: \[ I = \int_{-1}^{1} \frac{x^{2013}}{e^{|x|}(x^2 + \cos x)} \, dx + \int_{-1}^{1} \frac{1}{e^{|x|}} \, dx. \] Let’s denote these two integrals as \( I_1 \) and \( I_2 \): \[ I_1 = \int_{-1}^{1} \frac{x^{2013}}{e^{|x|}(x^2 + \cos x)} \, dx, \] \[ I_2 = \int_{-1}^{1} \frac{1}{e^{|x|}} \, dx. \] ### Step 2: Evaluate \( I_1 \) Notice that \( x^{2013} \) is an odd function, and \( e^{|x|} \) and \( x^2 + \cos x \) are even functions. Therefore, \( I_1 \) can be evaluated as follows: \[ I_1 = \int_{-1}^{1} \frac{x^{2013}}{e^{|x|}(x^2 + \cos x)} \, dx = 0. \] This is because the integral of an odd function over a symmetric interval around zero is zero. ### Step 3: Evaluate \( I_2 \) Now we evaluate \( I_2 \): \[ I_2 = \int_{-1}^{1} \frac{1}{e^{|x|}} \, dx. \] We can split this integral into two parts: \[ I_2 = \int_{-1}^{0} \frac{1}{e^{-x}} \, dx + \int_{0}^{1} \frac{1}{e^{x}} \, dx. \] ### Step 4: Calculate Each Part of \( I_2 \) 1. For \( x \) in \([-1, 0]\): \[ \int_{-1}^{0} e^{x} \, dx = [e^{x}]_{-1}^{0} = e^{0} - e^{-1} = 1 - \frac{1}{e}. \] 2. For \( x \) in \([0, 1]\): \[ \int_{0}^{1} e^{-x} \, dx = [-e^{-x}]_{0}^{1} = -e^{-1} + e^{0} = 1 - \frac{1}{e}. \] ### Step 5: Combine Results for \( I_2 \) Now, we can combine both parts: \[ I_2 = \left( 1 - \frac{1}{e} \right) + \left( 1 - \frac{1}{e} \right) = 2 - \frac{2}{e}. \] ### Step 6: Final Result Since \( I_1 = 0 \), we have: \[ I = I_1 + I_2 = 0 + \left( 2 - \frac{2}{e} \right) = 2 - \frac{2}{e}. \] Thus, the value of the integral is: \[ \boxed{2 - \frac{2}{e}}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|5 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos
  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(-pi//2)^(pi//2)(sin^(2)x)/(1+e^(x))dx is

(2) int(1)/(e^(x)+e^(-x))dx is equal to

Knowledge Check

  • The value of the integral int_(-1)^(1){(x^(2015))/(e^(|x|)(x^(2)+cosx))+(1)/(e^(|x|))}dx is equal to

    A
    0
    B
    `1-e^(-1)`
    C
    `2e^(-1)`
    D
    `2(1-e^(-1))`
  • The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

    A
    `e^(a^(2))`
    B
    `a`
    C
    `e^(-a^(2))`
    D
    `(a)/(2)`
  • The value of the integral int_(-1)^(1)(dx)/((1+x^(2))(1+e^(x)) is equal to

    A
    `(pi)/(4)`
    B
    `(pi)/(2)`
    C
    `pi`
    D
    0
  • Similar Questions

    Explore conceptually related problems

    The value of the definite integral int_(1)^(e)((x+1)e^(x).ln x)dx is

    The value of the integral int_(0)^(pi) (1)/(e^(cosx)+1)dx , is

    The value of integral int_(1)^(e) (log x)^(3)dx , is

    The value of the integral int_(1)^(2)e^(x)(log_(e)x+(x+1)/(x))dx is

    The value of the integral int_(e^(-1))^(e^(2)) |(log_(e)x)/(x)|dx is