Home
Class 12
MATHS
If int4(3-2x)^(-2)((3-2x)/(3+2x))^((1)/(...

If `int4(3-2x)^(-2)((3-2x)/(3+2x))^((1)/(3))dx=(3)/(alpha)((3+2x)/(3-2x))^((beta)/(gamma))+c`
`(beta and gamma" are prime nos.")`, then

A

`alpha, beta, gamma` are in G.P.

B

`alpha, beta, gamma` are in H.P.

C

`alphaa,beta, gamma` are in A.P.

D

`alpha=beta gamma`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given integral equation, we need to find the values of \( \alpha \), \( \beta \), and \( \gamma \) under the conditions that \( \beta \) and \( \gamma \) are prime numbers. Let's break down the solution step by step. ### Step 1: Understand the Integral We are given the integral: \[ \int 4(3-2x)^{-2}\left(\frac{3-2x}{3+2x}\right)^{\frac{1}{3}}dx = \frac{3}{\alpha}\left(\frac{3+2x}{3-2x}\right)^{\frac{\beta}{\gamma}} + c \] Here, we need to find the values of \( \alpha \), \( \beta \), and \( \gamma \). ### Step 2: Differentiate the Right Side To find the relationship between \( \alpha \), \( \beta \), and \( \gamma \), we differentiate the right-hand side: \[ \frac{d}{dx}\left(\frac{3}{\alpha}\left(\frac{3+2x}{3-2x}\right)^{\frac{\beta}{\gamma}}\right) \] Using the chain rule: \[ = \frac{3}{\alpha} \cdot \frac{\beta}{\gamma} \left(\frac{3+2x}{3-2x}\right)^{\frac{\beta}{\gamma}-1} \cdot \frac{d}{dx}\left(\frac{3+2x}{3-2x}\right) \] ### Step 3: Differentiate the Fraction Now we differentiate \( \frac{3+2x}{3-2x} \): \[ \frac{d}{dx}\left(\frac{3+2x}{3-2x}\right) = \frac{(3-2x)(2) - (3+2x)(-2)}{(3-2x)^2} \] Simplifying this gives: \[ = \frac{6 - 4x + 6 + 4x}{(3-2x)^2} = \frac{12}{(3-2x)^2} \] ### Step 4: Substitute Back into the Derivative Substituting this back into our derivative gives: \[ \frac{d}{dx}\left(\frac{3}{\alpha}\left(\frac{3+2x}{3-2x}\right)^{\frac{\beta}{\gamma}}\right) = \frac{3}{\alpha} \cdot \frac{\beta}{\gamma} \left(\frac{3+2x}{3-2x}\right)^{\frac{\beta}{\gamma}-1} \cdot \frac{12}{(3-2x)^2} \] ### Step 5: Set the Derivatives Equal Now we set this equal to the left-hand side of the original equation: \[ 4(3-2x)^{-2}\left(\frac{3-2x}{3+2x}\right)^{\frac{1}{3}} \] ### Step 6: Equate Coefficients From the equation, we can equate coefficients: 1. The coefficient of \( (3-2x)^{-2} \): \[ \frac{3 \cdot \beta \cdot 12}{\alpha \cdot \gamma} = 4 \] Simplifying gives: \[ 9\beta = \alpha \gamma \] 2. The powers of the base: \[ \frac{\beta}{\gamma} - 1 = \frac{1}{3} \] This simplifies to: \[ \frac{\beta}{\gamma} = \frac{4}{3} \] ### Step 7: Find Prime Numbers Since \( \beta \) and \( \gamma \) are prime numbers: Let \( \beta = 4k \) and \( \gamma = 3k \). The only primes satisfying \( \beta \) and \( \gamma \) being prime are \( \beta = 2 \) and \( \gamma = 3 \). ### Step 8: Solve for Alpha Substituting \( \beta \) and \( \gamma \) back into \( 9\beta = \alpha \gamma \): \[ 9 \cdot 2 = \alpha \cdot 3 \] This gives: \[ \alpha = 6 \] ### Final Values Thus, we find: - \( \alpha = 6 \) - \( \beta = 2 \) - \( \gamma = 3 \) ### Conclusion The final answer is: - \( \alpha = 6 \) - \( \beta = 2 \) - \( \gamma = 3 \)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 2 : SINGLE OPTION CORRECT TYPE|15 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos
  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

If int_(pi/6)^(pi/3) sqrt (1- sin 2x) dx = alpha beta sqrt 2 gamma sqrt 3 , where alpha, beta and gamma are rational numbers, then 3 alpha 4 beta-gamma is equal to _______.

The value of the determinant |(1,(alpha^(2x)-alpha^(-2x))^2,(alpha^(2x)+alpha^(-2x))^2),(1,(beta^(2x)-beta^(-2x))^2,(beta^(2x)+beta^(-2x))^2),(1,(gamma^(2x)-gamma^(-2x))^2,(gamma^(2x)+gamma^(-2x))^2)| is (a) 0 (b) (alphabeta gamma)^(2x) (c) (alpha beta gamma)^(-2x) (d) None of these

Knowledge Check

  • If alpha, beta ,gamma are the roots of the equation x ^(3) + 2x ^(2) - x+1 =0, then vlaue of ((2- alpha )(2-beta) (2-gamma))/((2+ alpha ) (2+ beta ) (2 + gamma)) is :

    A
    5
    B
    `-5`
    C
    10
    D
    `5/3`
  • Similar Questions

    Explore conceptually related problems

    Let mu, beta, gamma are the roots of the equation x^3 + 2x^2 + 3x + 1 = 0 . If the value of (1/beta^(3) + 1/gamma^(3) -1/alpha^(3)) (1/alpha^(3)+1/gamma^(3) -1/beta^(3)) +(1/alpha^(3) + 1/beta^(3) -1/gamma^(3)) (1/alpha^(3) + 1/gamma^(3) -1/beta^(3)) + (1/alpha^(3) + 1/beta^(3) -1/gamma^(3)) (1/beta^(3) + 1/gamma^(3) - 1/alpha^(3)) is lambda . Then find the sum of digit of |lambda|

    If (sqrt(e^(7x)))/(root (4)(e^(2x)+e^(-2x)))dx = 1/k(e^(n)+1)^(beta/gamma)+C (where C is constant of integration and k, alpha, beta, gamma are positive integers and beta, gamma are relatively prime) then (k/beta + gamma/alpha) is

    If alpha,beta,gamma,delta in R satisfy ((alpha+1)^(2)+(beta+1)^(2)+(gamma+1)^(2)+(delta+1)^(2))/(alpha+beta+gamma+delta)=4 If biquadratic equation a_(0)x^(4)+a_(1)x^(3)+a_(2)x^(2)+a_(3)x_(a-)-4=0 has (alpha+(1)/(beta)-1),(beta+(1)/(gamma)-1),(gamma+(1)/(delta)-1),(delta+(1)/(alpha)-1) then the value of (a_(2))/(a_(0)) is

    Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. If int _(0)^(2pi)g (x) dx = api ^(2) + beta pi+ gamma, where alpha, beta and gamma in R, then find the value of 2 (alpha + beta+ gamma).

    If (alpha, beta, gamma) are roots of equation x^(3)-3x^(2)+1=0 then the value of [((alpha)/(1+alpha))^(3)+((beta)/(1+beta))^(3)+((gamma)/(1+gamma))^(3) is k then |k|=

    |[x-3, x-4, x-alpha], [x-2, x-3, x-beta], [x-1, x-2, x-gamma]| =0,"where" alpha, beta, gamma "are in AP"

    alpha,beta,gamma roots of 4x^(3)+8x^(2)-x-2=0 ,then value of (4(alpha+1)(beta+1)(gamma+1))/(alpha beta gamma) is