Home
Class 12
MATHS
If the vectors veca, vecb, vecc, vecd ar...

If the vectors `veca, vecb, vecc, vecd` are any four vectors, then `(vecaxxvecb).(veccxxvecd)` is equal to

A

`veca.{(bxx(vecc xx vecd)}`

B

`(veca.vecc)(vecb.vecd)-(veca.vecd)(vecb.vecc)`

C

`{(vecaxxvecb)xxvecc}.vecd`

D

`(vecdxxvecc).(vecbxxveca)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \((\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d})\). ### Step-by-Step Solution: 1. **Understanding the Expression**: The expression \((\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d})\) represents the dot product of two cross products. 2. **Using the Scalar Triple Product Identity**: We can use the identity that relates the dot product of two cross products to a determinant: \[ \vec{u} \cdot (\vec{v} \times \vec{w}) = \text{det}(\vec{u}, \vec{v}, \vec{w}) \] Therefore, we can rewrite our expression as: \[ (\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = \text{det}(\vec{a}, \vec{b}, \vec{c}, \vec{d}) \] 3. **Applying the Determinant Property**: The determinant of four vectors can be expressed as: \[ \text{det}(\vec{a}, \vec{b}, \vec{c}, \vec{d}) = \text{det}(\vec{a}, \vec{b}, \vec{c}) \cdot \vec{d} \] However, for our specific case, we can directly state that: \[ (\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = \text{det}(\vec{a}, \vec{b}, \vec{c}, \vec{d}) \] 4. **Final Result**: Hence, the value of \((\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d})\) is equal to the scalar triple product of the vectors \(\vec{a}, \vec{b}, \vec{c}, \vec{d}\). ### Conclusion: The final answer is: \[ (\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = \text{det}(\vec{a}, \vec{b}, \vec{c}, \vec{d}) \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MODEL TEST PAPER 3

    MTG-WBJEE|Exercise CATEGORY 2 : SINGLE OPTION CORRECT TYPE|15 Videos
  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • PERMUTATIONS AND COMBINATIONS

    MTG-WBJEE|Exercise WB JEE Previous years questions (Category 3 : More than One Option correct type)|1 Videos

Similar Questions

Explore conceptually related problems

If the vectors veca, vecb, vecc, vecd are coplanar show that (vecaxxvecb)xx(veccxxvecd)=vec0

If veca,vecb,vecc,vecd are any for vectors then (vecaxxvecb)xx(veccxxvecd) is a vector (A) perpendicular to veca,vecb,vecc,vecd (B) along the the line intersection of two planes, one containing veca,vecb and the other containing vecc,vecd . (C) equally inclined both vecaxxvecb and veccxxvecd (D) none of these

Knowledge Check

  • If the vectors veca, vecb, vecc and vecd are coplanar vectors, then (vecaxxvecb)xx(veccxxvecd) is equal to

    A
    `veca+vecb+vecc+vecd`
    B
    `vec0`
    C
    `veca+vecb=vecc+vecd`
    D
    none of these
  • If veca, vecb, vecc, vecd are coplanar vectors, then (vecaxxvecb)xx(veccxxvecd)=

    A
    `1`
    B
    `veca`
    C
    `vecb`
    D
    `vec0`
  • If veca, vecb, vecc are three vectors, then [(vecaxxvecb, vecbxxvecc, veccxxveca)]=

    A
    `[(veca, vecb, vecc)]`
    B
    `2[(veca, vecb, vecc)]`
    C
    `3[(veca, vecb, vecc)]`
    D
    `[(veca, vecb, vecc)]^(2)`
  • Similar Questions

    Explore conceptually related problems

    If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb).(veccxxvecd)=1 and veca.vecc=1/2 then (A) veca,vecb,vecc are non coplanar (B) vecb,vecc, vecd are non coplanar (C) vecb, vecd are non paralel (D) veca, vecd are paralel and vecb, vecc are parallel

    If veca,vecb,vecc,vecd are four distinct vectors satisfying the conditions vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxecd then prove that veca.vecb+vecc.vecd!=veca.vecc+vecb.vecd

    If vectors, vecb, vcec and vecd are not coplanar, the pove that vector (veca xx vecb) xx (vecc xx vecd) + ( veca xx vecc) xx (vecd xx vecb) + (veca xx vecd) xx (vecb xx vecc) is parallel to veca .

    If vecb is a unit vector, then (veca. vecb)vecb+vecbxx(vecaxxvecb) is a equal to

    If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)