Home
Class 11
MATHS
Find r if (i) ""^5Pr=2^6P(r-1) (ii) "...

Find `r` if
(i) `""^5P_r=2^6P_(r-1)`
(ii) `""^5P_r=^6P_(r-1)`

A

a. 3 b. 9

B

a. 10 b. 4

C

a. 3 b. 4

D

a. 4 b. 3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problems, we will use the formula for permutations, which is defined as: \[ _nP_r = \frac{n!}{(n-r)!} \] ### Part (i): Solve \( ^5P_r = 2 \times ^6P_{r-1} \) 1. **Write the formula for \( ^5P_r \)**: \[ ^5P_r = \frac{5!}{(5-r)!} \] 2. **Write the formula for \( ^6P_{r-1} \)**: \[ ^6P_{r-1} = \frac{6!}{(6-(r-1))!} = \frac{6!}{(7-r)!} \] 3. **Substituting the formulas into the equation**: \[ \frac{5!}{(5-r)!} = 2 \times \frac{6!}{(7-r)!} \] 4. **Simplify \( 6! \)**: \[ 6! = 6 \times 5! \] So, we can rewrite the equation as: \[ \frac{5!}{(5-r)!} = 2 \times \frac{6 \times 5!}{(7-r)!} \] 5. **Cancel \( 5! \)** from both sides**: \[ \frac{1}{(5-r)!} = \frac{12}{(7-r)!} \] 6. **Cross-multiply**: \[ (7-r)! = 12 \times (5-r)! \] 7. **Expand \( (7-r)! \)**: \[ (7-r)(6-r)(5-r)! = 12 \times (5-r)! \] 8. **Cancel \( (5-r)! \)**: \[ (7-r)(6-r) = 12 \] 9. **Expand and rearrange**: \[ 42 - 13r + r^2 = 12 \] \[ r^2 - 13r + 30 = 0 \] 10. **Factor the quadratic equation**: \[ (r - 10)(r - 3) = 0 \] 11. **Find the values of \( r \)**: \[ r = 10 \quad \text{or} \quad r = 3 \] 12. **Since \( r \) must be less than or equal to 5**: \[ r = 3 \quad \text{is the valid solution.} \] ### Part (ii): Solve \( ^5P_r = ^6P_{r-1} \) 1. **Using the previous definitions**: \[ ^5P_r = \frac{5!}{(5-r)!} \] \[ ^6P_{r-1} = \frac{6!}{(7-r)!} \] 2. **Set the equations equal**: \[ \frac{5!}{(5-r)!} = \frac{6!}{(7-r)!} \] 3. **Substituting \( 6! \)**: \[ \frac{5!}{(5-r)!} = \frac{6 \times 5!}{(7-r)!} \] 4. **Cancel \( 5! \)**: \[ \frac{1}{(5-r)!} = \frac{6}{(7-r)!} \] 5. **Cross-multiply**: \[ (7-r)! = 6 \times (5-r)! \] 6. **Expand \( (7-r)! \)**: \[ (7-r)(6-r)(5-r)! = 6 \times (5-r)! \] 7. **Cancel \( (5-r)! \)**: \[ (7-r)(6-r) = 6 \] 8. **Expand and rearrange**: \[ 42 - 13r + r^2 = 6 \] \[ r^2 - 13r + 36 = 0 \] 9. **Factor the quadratic equation**: \[ (r - 9)(r - 4) = 0 \] 10. **Find the values of \( r \)**: \[ r = 9 \quad \text{or} \quad r = 4 \] 11. **Since \( r \) must be less than or equal to 5**: \[ r = 4 \quad \text{is the valid solution.} \] ### Final Answers: - For part (i): \( r = 3 \) - For part (ii): \( r = 4 \)
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Find r if : .^(10)P_r=2. ^9P_r

Find r, if 5^4P_r=6^5P_(r-1) .

Find r if 5 P(4,r) = 6P ( 5,r-1) , r ge 1.

Find thevalue of 'r': (i) .^(12)P_(r) = 1320 (ii) 5.^(4)P_(r) = 6.^(5)P_(r-1)

Find the value of r, if (i) .^(11)P_(r)=990 (ii) .^(8)P_(5)+5*.^(8)P_(4)=.^(9)P_(r)

If P(5, r)=2.P(6, r-1), find r.

Prove that ^(n-1) P_r+r .^(n-1) P_(r-1) = .^nP_r

Prove that .^(n-1) P_r+r .^(n-1) P_(r-1) = .^nP_r

If P(5, r)=P(6, r-1) ,find r.

If ""^(56)P_(r+6) : ""^(54)P_(r+3)= 30800, then r is