Home
Class 12
MATHS
Choose the correct answerintsqrt(1+x^2)d...

Choose the correct answer`intsqrt(1+x^2)dx`is equal to(A) `x/2sqrt(1+x^2)+1/2log|(x+sqrt(x+x^2))|+C`(B) `2/3(1+x^2)^(3/2)+C` (C) `2/3x(1+x^2)^(3/2)+C` (D) `(x^2)/2sqrt(1+x^2)+1/2x^2log|x+sqrt(1+x^2)|+C`

A

`x/2sqrt(1+x^2)+1/2log|(x+sqrt(x+x^2))|+C`

B

`2/3(1+x^2)^(3/2)+C`

C

`2/3x(1+x^2)^(3/2)+C`

D

`(x^2)/2sqrt(1+x^2)+1/2x^2log|x+sqrt(1+x^2)|+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sqrt{1+x^2} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( x = \tan \theta \). Then, differentiating both sides gives: \[ dx = \sec^2 \theta \, d\theta \] Also, we know that: \[ 1 + \tan^2 \theta = \sec^2 \theta \quad \Rightarrow \quad \sqrt{1 + x^2} = \sqrt{1 + \tan^2 \theta} = \sec \theta \] ### Step 2: Substitute in the integral Substituting \( x \) and \( dx \) into the integral gives: \[ \int \sqrt{1+x^2} \, dx = \int \sec \theta \cdot \sec^2 \theta \, d\theta = \int \sec^3 \theta \, d\theta \] ### Step 3: Integrate \( \sec^3 \theta \) To integrate \( \sec^3 \theta \), we can use integration by parts. Let: - \( u = \sec \theta \) - \( dv = \sec^2 \theta \, d\theta \) Then, we have: \[ du = \sec \theta \tan \theta \, d\theta \quad \text{and} \quad v = \tan \theta \] Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] This gives: \[ \int \sec^3 \theta \, d\theta = \sec \theta \tan \theta - \int \tan \theta \sec \theta \tan \theta \, d\theta \] The integral \( \int \tan^2 \theta \sec \theta \, d\theta \) can be simplified using \( \tan^2 \theta = \sec^2 \theta - 1 \): \[ \int \tan^2 \theta \sec \theta \, d\theta = \int (\sec^2 \theta - 1) \sec \theta \, d\theta = \int \sec^3 \theta \, d\theta - \int \sec \theta \, d\theta \] Let \( I = \int \sec^3 \theta \, d\theta \). Then: \[ I = \sec \theta \tan \theta - (I - \int \sec \theta \, d\theta) \] This simplifies to: \[ 2I = \sec \theta \tan \theta + \int \sec \theta \, d\theta \] Thus: \[ I = \frac{1}{2} \sec \theta \tan \theta + \frac{1}{2} \int \sec \theta \, d\theta \] ### Step 4: Evaluate \( \int \sec \theta \, d\theta \) The integral \( \int \sec \theta \, d\theta \) is known to be: \[ \int \sec \theta \, d\theta = \ln |\sec \theta + \tan \theta| + C \] ### Step 5: Substitute back to \( x \) Now substituting back: \[ I = \frac{1}{2} \sec \theta \tan \theta + \frac{1}{2} \ln |\sec \theta + \tan \theta| + C \] Recall that: \[ \sec \theta = \sqrt{1+x^2}, \quad \tan \theta = x \] Thus: \[ I = \frac{1}{2} x \sqrt{1+x^2} + \frac{1}{2} \ln |x + \sqrt{1+x^2}| + C \] ### Final Answer So, the final result is: \[ \int \sqrt{1+x^2} \, dx = \frac{x}{2} \sqrt{1+x^2} + \frac{1}{2} \ln |x + \sqrt{1+x^2}| + C \] ### Conclusion The correct option is (A): \[ \frac{x}{2} \sqrt{1+x^2} + \frac{1}{2} \ln |x + \sqrt{1+x^2}| + C \]

To solve the integral \( \int \sqrt{1+x^2} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( x = \tan \theta \). Then, differentiating both sides gives: \[ dx = \sec^2 \theta \, d\theta \] Also, we know that: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    NCERT ENGLISH|Exercise Exercise 7.11|20 Videos
  • INTEGRALS

    NCERT ENGLISH|Exercise EXERCISE 7.5|23 Videos
  • INTEGRALS

    NCERT ENGLISH|Exercise EXERCISE 7.10|10 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT ENGLISH|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT ENGLISH|Exercise Solved Examples|13 Videos

Similar Questions

Explore conceptually related problems

int(x^3dx)/(sqrt(1+x^2)) is equal to (A) 1/3sqrt(1+x^2)(2+x^2)+C (B) 1/3sqrt(1+x^2)(x^2-1)+C (C) 1/3(1+x^2)^(3/2)+C (D) 1/3sqrt(1+x^2)(x^2-2)+C

int(x^3dx)/(sqrt(1+x^2))i se q u a lto 1/3sqrt(1+x^2)(2+x^2)+C 1/3sqrt(1+x^2)(x^2-1)+C 1/3(1+x^2)^(3/2)+C (d) 1/3sqrt(1+x^2)(x^2-2)+C

Choose the correct answer intx^2e^(x^3)dx equals(A) 1/3e^(x^3) +C (B) 1/3e^(x^2)+C (C) 1/2e^(x^3)+C (D) 1/2e^(x^2)+C

Choose the correct answer intsqrt(x^2-8x+7)dx (A) 1/2(x-4)sqrt(x^2-8x+7)+9log|x-4+sqrt(x^2-8x+7)|+C (B) 1/2(x+4)sqrt(x^2-8x+7)+9log|x+4+sqrt(x^2-8x+7)|+C (C) 1/2(x-4)sqrt(x^2-8x+7)-3sqrt(2)log|x-4+sqrt(x^2-8x+7)|+C (D) 1/2(x-4)sqrt(x^2-8x+7)-(9/2)log|x-4+sqrt(x^2-8x+7)|+C

Choose the correct answer intsqrt(x^2-8x+7)dx (A) 1/2(x-4)sqrt(x^2-8x+7)+9log|x-4+sqrt(x^2-8x+7)|+C (B) 1/2(x+4)sqrt(x^2-8x+7)+9log|x+4+sqrt(x^2-8x+7)|+C (C) 1/2(x-4)sqrt(x^2-8x+7)-3sqrt(2)log|x-4+sqrt(x^2-8x+7)|+C (D) 1/2(x-4)sqrt(x^2-8x+7)-

Choose the correct answer intx^2e^x^3dx equals (A) 1/3e^x^3+C (B) 1/3e^x^2+C (C) 1/2e^x^3+C (D) 1/2e^x^2+C

int 1/ sqrt (a^2 + x^2) dx = log ( x + sqrt(x^2 + a^2)) + c

"tan"(cos^(-1)x) is equal to x/(1+x^2) b. (sqrt(1+x^2))/x c. (sqrt(1-x^2))/x d. sqrt(1-2x)

The value of sin(cot^-1x)= (A) sqrt(1+x^2) (B) x (C) (1+x^2)^(-3/2) (D) (1+x^2)^(-1/2)

intdx/(cosx-sinx) is equal to (A) 1/sqrt(2)log|tan(x/2-(3x)/8)|+C (B) 1/sqrt(2)log|cot(x/2)|+C (C) 1/sqrt(2)log|tan(x/2-pi/6)|+C (D) 1/sqrt(2)log|tan(x/2+(3pi)/8)|+C