Home
Class 8
MATHS
Observe the following pattern and find t...

Observe the following pattern and find the missing digits. `11^2=121101^2=102011001^2=1002001100001^2=12110000001^2`

Text Solution

AI Generated Solution

To solve the problem of finding the missing digits in the pattern given, we will analyze the squares of the numbers provided and identify the pattern. ### Step-by-Step Solution: 1. **Calculate \(11^2\)**: \[ 11^2 = 121 \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SQUARES AND SQUARE ROOTS

    NCERT ENGLISH|Exercise EXERCISE 6.4|9 Videos
  • SQUARES AND SQUARE ROOTS

    NCERT ENGLISH|Exercise EXERCISE 6.2|2 Videos
  • RATIONAL NUMBERS

    NCERT ENGLISH|Exercise EXERCISE 1.1|11 Videos
  • UNDERSTANDING QUADRILATERALS

    NCERT ENGLISH|Exercise EXERCISE 3.3|11 Videos

Similar Questions

Explore conceptually related problems

Observe the following pattern and find the missing digits: 11^2=121 101^2=10201 1001^2=1002001 10001^2=100020001 100001^2= 10000001^2= \

Observe the following pattern and supply the missing numbers. 11^2 = 121 101^2 = 10201 10101^2 = 102030201 1010101^2 = .........2 = 10203040504030201

Observe the following pattern and supply the missing numbers. (i) 11^2 = 121 (ii) 101^2 = 10201 (iii) 1001^2 = 1002001 (iv) 100001^2 = 1___2___1 (v) 10000001^2 = _________

Which of the following end with digit 1 ? 123^2,\ 77^2,\ 82^2,\ 161^2,\ 109^2

Solve the following Write the greatest 2-digit number multiple of 2

Using the given pattern, find the missing numbers. 1^2+2^2+2^2=3^2 2^2+3^2+6^2=7^2 3^2+4^2+12^2=13^2 4^2+5^2+[\_?]^2=21^2 5^2+[\_?]^2+30^2=32^2 6^2+7^2+[\_?]^2=[\_?]^2=[\_?][\_?]^2

Find the sum 11^2-1^2+12^2-2^2+13^2-3^2+……+20^2-10^2

Observe the following pattern and extend it to three more steps: 6\ x\ 2-5\ =7 7\ x\ 3-12 =9 8\ x\ 4-21=11 9\ x\ 5-32\ =13

Using the given pattern, find the missing numbers: 1^2+2^2+2^2=3^2 2^2+3^2+6^2=7^2 3^2+4^2+12^2=13^2 4^2+5^2+()^2=21^2 5^2+()^2+30^2=31^2 6^2+7^2+()^2=()^2

Observe the following pattern 1^2=1/6[1xx(1+1)xx(2xx1+1)] , 1^2+2^2=1/6[2xx(2+1)xx(2xx2+1)] , 1^2+2^2+3^2=1/6[3xx(3+1)xx(2xx3+1)], 1^2+2^2+3^2+4^2=1/6[4xx(4+1)xx(2xx4+1)], and find the values of each of the following 1^2+2^2+3^2+4^2+ddot+10^2, 5^2+6^2+7^2+8^2+9^2+10^2+11^2+12^2