Home
Class 11
MATHS
Evaluate the limits, if existlim(x rarr ...

Evaluate the limits, if exist`lim_(x rarr 0)(x(e^x-1)/(1-cosx))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{x(e^x - 1)}{1 - \cos x}, \] we will follow these steps: ### Step 1: Rewrite the denominator using a trigonometric identity We can use the identity for cosine: \[ 1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right). \] Thus, we can rewrite the limit as: \[ \lim_{x \to 0} \frac{x(e^x - 1)}{2 \sin^2\left(\frac{x}{2}\right)}. \] ### Step 2: Factor out constants We can factor out the constant \( \frac{1}{2} \) from the limit: \[ \lim_{x \to 0} \frac{x(e^x - 1)}{2 \sin^2\left(\frac{x}{2}\right)} = \frac{1}{2} \lim_{x \to 0} \frac{x(e^x - 1)}{\sin^2\left(\frac{x}{2}\right)}. \] ### Step 3: Use standard limits We know from standard limits that: \[ \lim_{x \to 0} \frac{e^x - 1}{x} = 1, \] and \[ \lim_{x \to 0} \frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}} = 1 \implies \lim_{x \to 0} \frac{\sin^2\left(\frac{x}{2}\right)}{\left(\frac{x}{2}\right)^2} = 1. \] ### Step 4: Rewrite the limit Now we can rewrite our limit using these standard results. We will multiply and divide by \( x^2 \): \[ \lim_{x \to 0} \frac{e^x - 1}{x} \cdot \frac{x^2}{\sin^2\left(\frac{x}{2}\right)}. \] ### Step 5: Substitute the limits Substituting the limits we have: \[ \frac{1}{2} \cdot 1 \cdot \lim_{x \to 0} \frac{x^2}{\sin^2\left(\frac{x}{2}\right)} = \frac{1}{2} \cdot 1 \cdot 4 = 2. \] ### Final Answer Thus, the limit evaluates to: \[ \lim_{x \to 0} \frac{x(e^x - 1)}{1 - \cos x} = 2. \] ---

To evaluate the limit \[ \lim_{x \to 0} \frac{x(e^x - 1)}{1 - \cos x}, \] we will follow these steps: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT ENGLISH|Exercise EXERCISE 13.2|11 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT ENGLISH|Exercise EXERCISE 12.1|4 Videos
  • LINEAR INEQUALITIES

    NCERT ENGLISH|Exercise EXERCISE 6.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate the limits, if exist (lim)_(x->0)(e^(4x)-1)/x

Evaluate the limits, if exist (lim)_(x->0)(e^(sinx)-1)/x

lim_(x rarr0)(sin^2x)/(1-cosx)

Evaluate the limits, if exist (lim)_(x->5)(e^x-e^5)/(x-5)

Evaluate the limits, if exist lim_(x->3)(e^x-e^3)/(x-3)

Evaluate the limits, if exist (lim)_(xrarr0)(log(1+x^3))/(sin^3x)

lim_(x rarr0)(x(e^(x)-1))/(1-cos x) is equal to

Evaluate the limits, if exist (lim)_(x->0)(e^(2+x)-e^2)/x

Evaluate the limits, if exist lim_(x-gt0)(log_e(1+2x))/(x)

lim_(x rarr 0)((3^(x)-1)/(sqrt(1+x)-1))