Home
Class 11
MATHS
In triangle ABC, prove that 'tan((B-C)...

In triangle ABC, prove that 'tan((B-C)/2)=(b-c)/(b+c)cotA/2``tan(C-A)/2=(c-a)/(c+a)cotB/2``tan(A-B)/2=(a-b)/(a+b)cotC/2`

Text Solution

AI Generated Solution

To prove the identities in triangle ABC, we will follow a systematic approach using the sine rule and trigonometric identities. We will prove each identity step by step. ### Step 1: Proving \( \tan\left(\frac{B-C}{2}\right) = \frac{B-C}{B+C} \cot\left(\frac{A}{2}\right) \) 1. **Start with the Sine Rule**: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • STRAIGHT LINES

    NCERT ENGLISH|Exercise EXERCISE 10.4|4 Videos

Similar Questions

Explore conceptually related problems

In triangle ABC , prove that tan (B-C)/2 =[( b-c) /(b+c )] cot A/2 , tan (C-A)/2 = [(c-a)/(c+a)]cot B/2 , tan (A-B)/2 = [(a-b)/(a+b)]cot c/2

For triangle ABC, show that "tan"(B+C)/2="cot"A/2

For any triangle ABC, prove that sin(B-C)/sin(B+C)=(b^2-c^2)/(a^2)

In any triangle A B C , prove that: (b-c)/(b+c)=(tan((B-C)/2))/(tan((B+C)/2))

For any triangle ABC, prove that (b+c)cos((B+C)/2)=acos((B-C)/2)

In any triangle A B C , prove that: Delta=(b^2+c^2-a^2)/(4cotA) .

In Delta ABC , prove that: (a+b+c)/(a-b+c)=cotA/2cotC/2

In a "DeltaA B C prove that tan(("A"+"B")/2)=cot("C"/2)

In any DeltaABC , prove that : tan (A/2 + B) = (c+b)/(c-b) tan (A/2)

In DeltaABC , prove that: cotA/2+cotB/2+cotC/2=(a+b+c)/(a+b-c)cotC/2