Home
Class 12
MATHS
inte^(e^2)(logx dx)/((1+logx)^2)=e/6(2e ...

`int_e^(e^2)(logx dx)/((1+logx)^2)=e/6(2e - 3)`

Answer

Step by step text solution for int_e^(e^2)(logx dx)/((1+logx)^2)=e/6(2e - 3) by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

int_(e)^(e^(2))(logxdx)/((1+logx)^(2))=(e)/(6)(2e-3)

int_(1)^(e)(dx)/(x(1+logx)^(2))

Knowledge Check

  • int_(e)^(e^(2)) (1/logx-1/((logx)^(2)))dx=

    A
    `(e(e-1))/2`
    B
    `(-e(e-1))/2`
    C
    `(e(e-2))/2`
    D
    `(-e(e-2))/2`
  • Similar Questions

    Explore conceptually related problems

    Evaluate : int_e^(e^2){1/(logx)-1/((logx)^2)}dx

    Evaluate : int_e^(e^2){1/(logx)-1/((logx)^2)}dx

    int_(1)^(e)(dx)/(x(1+logx))

    int_(1//e)^(e)(dx)/(x(logx)^(1//3))

    int_(1)^(e)(logx)^(2)dx

    int_(1//e)^(e)|logx|dx=

    int_(1)^(e)(1+logx)/(x)dx