Home
Class 12
MATHS
inte^(e^2)(logx dx)/((1+logx)^2)=e/6(2e ...

`int_e^(e^2)(logx dx)/((1+logx)^2)=e/6(2e - 3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(e)^(e^(2))(logxdx)/((1+logx)^(2))=(e)/(6)(2e-3)

int_(1)^(e)(dx)/(x(1+logx)^(2))

int_(e)^(e^(2)) (1/logx-1/((logx)^(2)))dx=

Evaluate : int_e^(e^2){1/(logx)-1/((logx)^2)}dx

Evaluate : int_e^(e^2){1/(logx)-1/((logx)^2)}dx

int_(1)^(e)(dx)/(x(1+logx))

int_(1//e)^(e)(dx)/(x(logx)^(1//3))

int_(1)^(e)(logx)^(2)dx

int_(1//e)^(e)|logx|dx=

int_(1)^(e)(1+logx)/(x)dx