Home
Class 12
MATHS
Evaluate : int(dx)/((x-alpha)(beta-x))be...

Evaluate : `int(dx)/((x-alpha)(beta-x))beta gt alpha`

Text Solution

Verified by Experts

The correct Answer is:
`2sin^(-1)sqrt((x-alpha)/(beta-alpha))+c`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    OSWAAL PUBLICATION|Exercise INDEFINITE INTEGRALS (LONG ANSWER TYPE QUESTIONS - II)|25 Videos
  • INTEGRALS

    OSWAAL PUBLICATION|Exercise DEFINITE INTEGRALS (SHORT TYPE ANSWER TYPE QUESTIONS - I)|7 Videos
  • INTEGRALS

    OSWAAL PUBLICATION|Exercise INDEFINITE INTEGRALS (SHORT ANSWER TYPE QUESTIONS - I)|18 Videos
  • II PUC TOPPER'S ANSWERS MARCH (2017)

    OSWAAL PUBLICATION|Exercise PART - E Answer any one question :|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OSWAAL PUBLICATION|Exercise SHORT ANSWER TYPE QUESTIONS - II|43 Videos

Similar Questions

Explore conceptually related problems

int dx/(sin(x-alpha)cos(x-beta)) =

If alpha,beta,gamma are the roots of x^3-x^2-1=0 then the value of (1+alpha)/(1-alpha)+(1+beta)/(1-beta)+(1+gamma)/(1-gamma) is equal to

If alpha and beta are zeros of f(x) = 6x^(2) + x= 2 find the value fo (alpha)/(beta) +(beta)/(alpha) .

alpha+beta are the zeroes of the polynomial x^(2)-6x+4 , then the value of ((alpha+beta)^(2)-2alpha beta)/(alpha beta) is

If alpha , beta and gamma are roots of the equations x^3+px+q=0 then the value of det : [(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)] is

If alpha and beta are zeros of f(t) = t^(2) - 4t +3 , find the value of alpha ^(4) beta ^(3) + beta ^(4) alpha ^(3) .

If alpha , beta are the roots of lambda(x^(2)+x)+x+5 =0 and lambda_(1) , lambda_(2) are the two values of lambda for which alpha , beta are connected by the relation (alpha)/(beta)+(beta)/(alpha) =4, then the value of (lambda_(1))/(lambda_(2))+(lambda_(2))/(lambda_(1)) =

If alpha,beta are the roots of x^2+p x+q=0a n dgamma,delta are the roots of x^2+r x+s=0, evaluate (alpha-gamma)(alpha-delta)(beta-gamma)(beta-delta) in lterms of p ,q ,r ,a n dsdot Deduce the condition that the equation has a common root.