Home
Class 11
MATHS
Evaluate: "(i) "^(10)P(4) " (ii) ...

Evaluate:
` "(i) "^(10)P_(4) " (ii) "^(62)P_(3)" (iii) "^(6)P_(6) " (iv) "^(9)P_(0)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given permutations, we will use the formula for permutations, which is: \[ ^nP_r = \frac{n!}{(n-r)!} \] where \( n \) is the total number of items, \( r \) is the number of items to choose, and \( ! \) denotes factorial. Now, let's evaluate each part step by step. ### (i) Evaluate \( ^{10}P_4 \) 1. **Identify \( n \) and \( r \)**: Here, \( n = 10 \) and \( r = 4 \). 2. **Apply the formula**: \[ ^{10}P_4 = \frac{10!}{(10-4)!} = \frac{10!}{6!} \] 3. **Expand \( 10! \)**: \[ 10! = 10 \times 9 \times 8 \times 7 \times 6! \] 4. **Substitute back into the equation**: \[ ^{10}P_4 = \frac{10 \times 9 \times 8 \times 7 \times 6!}{6!} \] 5. **Cancel \( 6! \)**: \[ ^{10}P_4 = 10 \times 9 \times 8 \times 7 \] 6. **Calculate the product**: \[ 10 \times 9 = 90 \] \[ 90 \times 8 = 720 \] \[ 720 \times 7 = 5040 \] 7. **Final result**: \[ ^{10}P_4 = 5040 \] ### (ii) Evaluate \( ^{62}P_3 \) 1. **Identify \( n \) and \( r \)**: Here, \( n = 62 \) and \( r = 3 \). 2. **Apply the formula**: \[ ^{62}P_3 = \frac{62!}{(62-3)!} = \frac{62!}{59!} \] 3. **Expand \( 62! \)**: \[ 62! = 62 \times 61 \times 60 \times 59! \] 4. **Substitute back into the equation**: \[ ^{62}P_3 = \frac{62 \times 61 \times 60 \times 59!}{59!} \] 5. **Cancel \( 59! \)**: \[ ^{62}P_3 = 62 \times 61 \times 60 \] 6. **Calculate the product**: \[ 62 \times 61 = 3782 \] \[ 3782 \times 60 = 226920 \] 7. **Final result**: \[ ^{62}P_3 = 226920 \] ### (iii) Evaluate \( ^{6}P_6 \) 1. **Identify \( n \) and \( r \)**: Here, \( n = 6 \) and \( r = 6 \). 2. **Apply the formula**: \[ ^{6}P_6 = \frac{6!}{(6-6)!} = \frac{6!}{0!} \] 3. **Recall that \( 0! = 1 \)**: \[ ^{6}P_6 = 6! \] 4. **Calculate \( 6! \)**: \[ 6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720 \] 5. **Final result**: \[ ^{6}P_6 = 720 \] ### (iv) Evaluate \( ^{9}P_0 \) 1. **Identify \( n \) and \( r \)**: Here, \( n = 9 \) and \( r = 0 \). 2. **Apply the formula**: \[ ^{9}P_0 = \frac{9!}{(9-0)!} = \frac{9!}{9!} \] 3. **Simplify**: \[ ^{9}P_0 = 1 \] 4. **Final result**: \[ ^{9}P_0 = 1 \] ### Summary of Results: - \( ^{10}P_4 = 5040 \) - \( ^{62}P_3 = 226920 \) - \( ^{6}P_6 = 720 \) - \( ^{9}P_0 = 1 \)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PERMUTATIONS

    RS AGGARWAL|Exercise EXERCISE 8D|28 Videos
  • PERMUTATIONS

    RS AGGARWAL|Exercise EXERCISE 8E|20 Videos
  • PERMUTATIONS

    RS AGGARWAL|Exercise EXERCISE 8B|36 Videos
  • PARABOLA

    RS AGGARWAL|Exercise EXERCISE-22|10 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    RS AGGARWAL|Exercise EXERCISE 4|23 Videos

Similar Questions

Explore conceptually related problems

Evaluate "(i) "^(12)P_(4) " (ii) "^(75)P_(2) " (iii) "^(8)P_(8)

Evaluate : (i) ""^(20)P_(4) (ii) ""^(75)P_(2)

Evaluate the following : (i) ""^(8)P_(5) (ii) ""^(10)P_(3) (iii) ""^(12)C_(7) (iv) ""^(9)C_(0) .

Evaluate the following: (i) .^(9)P_(3) (ii) .^(10)P_(2) (iii) .^(12)P_(4)

Evaluate (i) ""^(8)P_(3) (ii) ""^(12)P_(2)

Find 'r' when : (i) ""^(10)P_(r )=2 ""^(9)P_(r ) (ii) ""^(11)P_(r )= ""^(12)P_(r-1) .

"is"^(10)P_(3)= ""^(9)P_(2)+3""^(9)P_(3) ?.

Find thevalue of 'r': (i) .^(12)P_(r) = 1320 (ii) .^(56)P_(r+6): .^(54)P_(r+3) = 30800 :1 (iii) 5.^(4)P_(r) = 6.^(5)P_(r-1) (iv) .^(9)P_(5) +5 .^(9)P_(4) = 10 P_(r)

Prove that : (i) ""^(n)P_(n)=2""^(n)P_(n-2) (ii) ""^(10)P_(3)=""^(9)P_(3)+3""^(9)P_(2) .

Find 'r' if : (i) ""^(5)P_(r )= ""^(6)P_(r-1) (ii) 5""^(4)P_(r )=6""^(5)P_(r-1) (iii) ""^(5)P_(r )=2""^(6)P_(r-1) (iv) ""^(10)P_(r+1): ""^(11)P_(r )=30 :11 .