Home
Class 11
MATHS
If (n+1)! =12 xx [(n-1)!], find the val...

If `(n+1)! =12 xx [(n-1)!]`, find the value of n.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((n+1)! = 12 \times (n-1)!\), we can follow these steps: ### Step 1: Rewrite the factorial expression We start with the equation: \[ (n+1)! = 12 \times (n-1)! \] We know that \((n+1)! = (n+1) \times n \times (n-1)!\). So we can rewrite the equation as: \[ (n+1) \times n \times (n-1)! = 12 \times (n-1)! \] ### Step 2: Cancel out \((n-1)!\) Since \((n-1)!\) appears on both sides of the equation, we can safely cancel it out (assuming \(n \neq 1\) since \(0! = 1\)): \[ (n+1) \times n = 12 \] ### Step 3: Expand and rearrange the equation Now we expand the left-hand side: \[ n^2 + n = 12 \] Rearranging gives us: \[ n^2 + n - 12 = 0 \] ### Step 4: Factor the quadratic equation Next, we need to factor the quadratic equation. We look for two numbers that multiply to \(-12\) and add to \(1\). The numbers \(4\) and \(-3\) work: \[ (n + 4)(n - 3) = 0 \] ### Step 5: Solve for \(n\) Setting each factor to zero gives us: \[ n + 4 = 0 \quad \Rightarrow \quad n = -4 \quad \text{(not valid since } n \text{ must be positive)} \] \[ n - 3 = 0 \quad \Rightarrow \quad n = 3 \] ### Conclusion The only valid solution is: \[ \boxed{3} \]

To solve the equation \((n+1)! = 12 \times (n-1)!\), we can follow these steps: ### Step 1: Rewrite the factorial expression We start with the equation: \[ (n+1)! = 12 \times (n-1)! \] We know that \((n+1)! = (n+1) \times n \times (n-1)!\). So we can rewrite the equation as: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PERMUTATIONS

    RS AGGARWAL|Exercise EXERCISE 8G|6 Videos
  • PARABOLA

    RS AGGARWAL|Exercise EXERCISE-22|10 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    RS AGGARWAL|Exercise EXERCISE 4|23 Videos

Similar Questions

Explore conceptually related problems

If (n+1)! =12xx(n-1)! , find the value of n.

If (n+3)! =56xx(n+1)! , find the value of n.

Knowledge Check

  • If (n+2)! = 60 xx (n-1)! , find n.

    A
    4
    B
    3
    C
    5
    D
    6
  • If (n+1)! =90 xx(n-1)!, find n .

    A
    `n=11`
    B
    `n=8`
    C
    `n=10`
    D
    `n=9`
  • If 16^(n+1) = 64 xx 4^(-n) , the value of n is

    A
    `1/3`
    B
    `1/9`
    C
    `1/2`
    D
    1
  • Similar Questions

    Explore conceptually related problems

    If .^(n)C_(12) = .^(n)C_(16) , find the value of n

    If (n!)/((2!)xx(n-2)!): (n!)/((4!)xx(n-4)!)=2:1 , find the value of n.

    If ((2n!))/((3!)xx(2n-3)!): (n!)/((2!)xx(n-2)!)=44:3 , find the value of n.

    If   f(x ) = n/( n+1) , then find the value of f(n) + 1/f(n)

    If ^(n)C_(12)=^(n)C_(5), find the value of n