Home
Class 12
MATHS
Let A = [(7,5),(4,8)] ,B= [(2,3),(3,5)] ...

Let A = `[(7,5),(4,8)] ,B= [(2,3),(3,5)]` and `C= [(5,-3),(-3,2)]` then `sum_(k=0)^(oo) (1)/(3^(k)) tr { A(BC)^(k)}`= _____

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the expression: \[ \sum_{k=0}^{\infty} \frac{1}{3^k} \text{tr}(A(BC)^k) \] where \( A = \begin{pmatrix} 7 & 5 \\ 4 & 8 \end{pmatrix} \), \( B = \begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix} \), and \( C = \begin{pmatrix} 5 & -3 \\ -3 & 2 \end{pmatrix} \). ### Step 1: Calculate \( BC \) First, we need to compute the product \( BC \): \[ BC = B \cdot C = \begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix} \cdot \begin{pmatrix} 5 & -3 \\ -3 & 2 \end{pmatrix} \] Using the row-column multiplication rule: \[ BC = \begin{pmatrix} (2 \cdot 5 + 3 \cdot -3) & (2 \cdot -3 + 3 \cdot 2) \\ (3 \cdot 5 + 5 \cdot -3) & (3 \cdot -3 + 5 \cdot 2) \end{pmatrix} \] Calculating each element: - First row, first column: \( 2 \cdot 5 + 3 \cdot -3 = 10 - 9 = 1 \) - First row, second column: \( 2 \cdot -3 + 3 \cdot 2 = -6 + 6 = 0 \) - Second row, first column: \( 3 \cdot 5 + 5 \cdot -3 = 15 - 15 = 0 \) - Second row, second column: \( 3 \cdot -3 + 5 \cdot 2 = -9 + 10 = 1 \) Thus, \[ BC = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I \] ### Step 2: Substitute \( BC \) into the expression Now that we have \( BC = I \), we can substitute this back into our original summation: \[ \sum_{k=0}^{\infty} \frac{1}{3^k} \text{tr}(A(I)^k) = \sum_{k=0}^{\infty} \frac{1}{3^k} \text{tr}(A) \] ### Step 3: Calculate \( \text{tr}(A) \) The trace of matrix \( A \) is the sum of its diagonal elements: \[ \text{tr}(A) = 7 + 8 = 15 \] ### Step 4: Substitute \( \text{tr}(A) \) into the summation Now we substitute \( \text{tr}(A) \) into the summation: \[ \sum_{k=0}^{\infty} \frac{1}{3^k} \cdot 15 = 15 \sum_{k=0}^{\infty} \frac{1}{3^k} \] ### Step 5: Calculate the geometric series The series \( \sum_{k=0}^{\infty} \frac{1}{3^k} \) is a geometric series with first term \( a = 1 \) and common ratio \( r = \frac{1}{3} \): \[ \sum_{k=0}^{\infty} \frac{1}{3^k} = \frac{1}{1 - \frac{1}{3}} = \frac{1}{\frac{2}{3}} = \frac{3}{2} \] ### Step 6: Final calculation Now we can compute the final result: \[ 15 \cdot \frac{3}{2} = \frac{45}{2} \] Thus, the final answer is: \[ \frac{45}{2} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Concept - based) (Single Correct Answer Type Questions)|10 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise EXERCISE ( LEVEL -1) (Single Correct Answer Type Questions)|43 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES ( LEVEL 2 ( Straight Objective Type Questions ) )|11 Videos
  • MATHEMATICAL REASONING

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B. ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos
  • PARABOLA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTRE ENTRANCE EXAMINATION PAPERS|9 Videos

Similar Questions

Explore conceptually related problems

A = ((2.1,2.5,3.7),(-2.1,5.9,3.8),(0,-2.9,-3)),B=((cosalpha,sinalpha,0),(sin alpha,cosalpha,0),(0,0,-1)) ,C=((cos alpha,sinalpha,0),(-sin alpha,cos alpha,0),(0,0,1)) then sum_(k=0)^(oo)(1)/(3^(k))tr(A(BC)^(k))= ________

Consider three matrices A=[(2,1),(4,1)], B=[(3,4),(2,3)] and C=[(3,-4),(-2,3)]. Then ghe value of the sum tr(A)+tr((ABC))/2 +tr((ABC)^2)/4+tr((ABC)^3)/2+.......+oo is (A) 6 (B) 9 (C) 12 (D) none of these

Knowledge Check

  • If [{:(1,5),(3,4):}] [{:(3,1),(3,5):}] = [{:(18,26),(k,23):}] , then the value of k is

    A
    21
    B
    13
    C
    28
    D
    12
  • Let three matrices A = [[2,1],[4,1]],B=[[3,4],[2,3]]and C= [[3,-4],[-2,3]], then tr (A) + tr ((ABC)/2)+tr((A(BC)^(2))/4) + tr ((A(BC)^(3))/8) +...+infty equals to

    A
    4
    B
    9
    C
    12
    D
    6
  • Similar Questions

    Explore conceptually related problems

    If A=[(0,3),(-7,5)] and I=[(1,0),(0,1)] , then find 'k' so that k^(2)=5A-21I .

    Let A=[[7,5],[4,8]] , B=[[4,3],[7,5]] and C=[[-5,3],[7,-4]] if Tr(S) denotes the trace of a square matrix S then sum_(k=0)^(oo)(1)/(3^(k))Tr{A(BC)^(k)}=

    Let A+2B=[(1,2,0),(6,-1,3),(-5,3,1)] and 2A-B=[(2,-1,5),(2,-1,6),(0,1,2)], then find tr(A)-tr(B).

    sum_ (i = 0)^(oo) sum_ (j = 0)^(oo) sum_ (k = 0)^(oo) (1)/(3^(i) 3^(i) 3^(k) )

    Compute the summation sum_(k=0)^(27)k([27k])((1)/(3))^(k)((2)/(3))^(27-k)

    Let A+2B=[{:(2,4,0),(6,-3,3),(-5,3,5):}] and 2A-B=[{:(6,-2,4),(6,1,5),(6,3,4):}] , then tr (A) - tr (B) is equal to (where , tr (A) =n trace of matrix x A i.e. . Sum of the principle diagonal elements of matrix A)