Home
Class 12
MATHS
Let A = [(7,5),(4,8)] ,B= [(2,3),(3,5)] ...

Let A = `[(7,5),(4,8)] ,B= [(2,3),(3,5)]` and `C= [(5,-3),(-3,2)]` then `sum_(k=0)^(oo) (1)/(3^(k)) tr { A(BC)^(k)}`= _____

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the expression: \[ \sum_{k=0}^{\infty} \frac{1}{3^k} \text{tr}(A(BC)^k) \] where \( A = \begin{pmatrix} 7 & 5 \\ 4 & 8 \end{pmatrix} \), \( B = \begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix} \), and \( C = \begin{pmatrix} 5 & -3 \\ -3 & 2 \end{pmatrix} \). ### Step 1: Calculate \( BC \) First, we need to compute the product \( BC \): \[ BC = B \cdot C = \begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix} \cdot \begin{pmatrix} 5 & -3 \\ -3 & 2 \end{pmatrix} \] Using the row-column multiplication rule: \[ BC = \begin{pmatrix} (2 \cdot 5 + 3 \cdot -3) & (2 \cdot -3 + 3 \cdot 2) \\ (3 \cdot 5 + 5 \cdot -3) & (3 \cdot -3 + 5 \cdot 2) \end{pmatrix} \] Calculating each element: - First row, first column: \( 2 \cdot 5 + 3 \cdot -3 = 10 - 9 = 1 \) - First row, second column: \( 2 \cdot -3 + 3 \cdot 2 = -6 + 6 = 0 \) - Second row, first column: \( 3 \cdot 5 + 5 \cdot -3 = 15 - 15 = 0 \) - Second row, second column: \( 3 \cdot -3 + 5 \cdot 2 = -9 + 10 = 1 \) Thus, \[ BC = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I \] ### Step 2: Substitute \( BC \) into the expression Now that we have \( BC = I \), we can substitute this back into our original summation: \[ \sum_{k=0}^{\infty} \frac{1}{3^k} \text{tr}(A(I)^k) = \sum_{k=0}^{\infty} \frac{1}{3^k} \text{tr}(A) \] ### Step 3: Calculate \( \text{tr}(A) \) The trace of matrix \( A \) is the sum of its diagonal elements: \[ \text{tr}(A) = 7 + 8 = 15 \] ### Step 4: Substitute \( \text{tr}(A) \) into the summation Now we substitute \( \text{tr}(A) \) into the summation: \[ \sum_{k=0}^{\infty} \frac{1}{3^k} \cdot 15 = 15 \sum_{k=0}^{\infty} \frac{1}{3^k} \] ### Step 5: Calculate the geometric series The series \( \sum_{k=0}^{\infty} \frac{1}{3^k} \) is a geometric series with first term \( a = 1 \) and common ratio \( r = \frac{1}{3} \): \[ \sum_{k=0}^{\infty} \frac{1}{3^k} = \frac{1}{1 - \frac{1}{3}} = \frac{1}{\frac{2}{3}} = \frac{3}{2} \] ### Step 6: Final calculation Now we can compute the final result: \[ 15 \cdot \frac{3}{2} = \frac{45}{2} \] Thus, the final answer is: \[ \frac{45}{2} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Concept - based) (Single Correct Answer Type Questions)|10 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise EXERCISE ( LEVEL -1) (Single Correct Answer Type Questions)|43 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES ( LEVEL 2 ( Straight Objective Type Questions ) )|11 Videos
  • MATHEMATICAL REASONING

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B. ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos
  • PARABOLA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTRE ENTRANCE EXAMINATION PAPERS|9 Videos

Similar Questions

Explore conceptually related problems

Consider three matrices A=[(2,1),(4,1)], B=[(3,4),(2,3)] and C=[(3,-4),(-2,3)]. Then ghe value of the sum tr(A)+tr((ABC))/2 +tr((ABC)^2)/4+tr((ABC)^3)/2+.......+oo is (A) 6 (B) 9 (C) 12 (D) none of these

If A=[(0,3),(-7,5)] and I=[(1,0),(0,1)] , then find 'k' so that k^(2)=5A-21I .

Let A=[[7,5],[4,8]] , B=[[4,3],[7,5]] and C=[[-5,3],[7,-4]] if Tr(S) denotes the trace of a square matrix S then sum_(k=0)^(oo)(1)/(3^(k))Tr{A(BC)^(k)}=

If [{:(1,5),(3,4):}] [{:(3,1),(3,5):}] = [{:(18,26),(k,23):}] , then the value of k is

Let A+2B=[(1,2,0),(6,-1,3),(-5,3,1)] and 2A-B=[(2,-1,5),(2,-1,6),(0,1,2)], then find tr(A)-tr(B).

sum_ (i = 0)^(oo) sum_ (j = 0)^(oo) sum_ (k = 0)^(oo) (1)/(3^(i) 3^(i) 3^(k) )

Let three matrices A = [[2,1],[4,1]],B=[[3,4],[2,3]]and C= [[3,-4],[-2,3]], then tr (A) + tr ((ABC)/2)+tr((A(BC)^(2))/4) + tr ((A(BC)^(3))/8) +...+infty equals to

Compute the summation sum_(k=0)^(27)k([27k])((1)/(3))^(k)((2)/(3))^(27-k)

Let A+2B=[{:(2,4,0),(6,-3,3),(-5,3,5):}] and 2A-B=[{:(6,-2,4),(6,1,5),(6,3,4):}] , then tr (A) - tr (B) is equal to (where , tr (A) =n trace of matrix x A i.e. . Sum of the principle diagonal elements of matrix A)

MCGROW HILL PUBLICATION-MATRICES-SOLVED EXAMPLES ( LEVEL 2 (Numercial Answer Type Questions))
  1. Let A = [(7,5),(4,8)] ,B= [(2,3),(3,5)] and C= [(5,-3),(-3,2)] then su...

    Text Solution

    |

  2. If x =alpha, y=beta, z = gamma is a solution of the system of equation...

    Text Solution

    |

  3. Suppose p,q,r in R and and pqr = 2.5 . Let A = [(p,q,r),(r,p,q),(q,r,...

    Text Solution

    |

  4. Suppose A and B are two 3xx3 non singular matrices such that tr (AB) =...

    Text Solution

    |

  5. Suppose k is a root of x^(2)-6.1x+5.1=0 such that A=[(1,2,1),(3,2,3),(...

    Text Solution

    |

  6. Let A = ((2.1,2.7,1.3),(3.1,3.2,1.7),(2.1,2.5,2.9)). The sum of values...

    Text Solution

    |

  7. If the system of linear equations ax+(a+1)y+(a-1)z=0 (a-1)x+(a+2)y...

    Text Solution

    |

  8. Let A = [(3,-1),(0,2)] . Suppose A satisfies the equation x^(2)+ax+b=0...

    Text Solution

    |

  9. Let A = [(5.1,-3.1,0),(-3.1,5.1,0),(0,0,2.2)] X be a non zero 3xx1 mat...

    Text Solution

    |

  10. A solution set of the equations x+2y+z=1, x+3y+4z=k, x+5y+10z=k^(2) is

    Text Solution

    |

  11. Let alpha=(2kpi)/(2025),beta=(2mpi)/(2026)"and " gamma=(2kpi)/(2027) ...

    Text Solution

    |

  12. Let A = ((1,2,3),(0,0,0),(3,2,1)) and A^(n)=((a(n),b(n),c(n)),(0,0,0),...

    Text Solution

    |

  13. Let A and B be two 3xx3 real matrices such that AB ne BA AB-B^(2)...

    Text Solution

    |

  14. Let A and B be two 3xx3 matrices with integer entries . If 6AB +2A+3B=...

    Text Solution

    |

  15. Let A = ((1,1,3),(5,2,6),(-2,-1,-3)) and let n be the smallest value o...

    Text Solution

    |

  16. Suppose a,b,c in R - {0} and a+b+c =0 Let alpha =(1)/(5) (a^(5)+b^(5)+...

    Text Solution

    |

  17. Let m = the number of values of a for which the system of equations ...

    Text Solution

    |

  18. If A = [(2,52,152),(4 , 106,358),(6,162,620)] then det (adj ((1)/(2) A...

    Text Solution

    |