Home
Class 12
MATHS
If int(2x-sqrt(sin^(-1)x))/(sqrt(1-x^(2)...

If `int(2x-sqrt(sin^(-1)x))/(sqrt(1-x^(2)))dx=C-2sqrt(1-x^(2))-(2)/(3)sqrt(f(x))` then f(x) is equal to

A

`sin^(-1)x`

B

`2sin^(-1)x`

C

`(sin^(-1)x)^(3)`

D

`3(sin^(-1)x)^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral given and find the function \( f(x) \) such that: \[ \int \frac{2x - \sqrt{\sin^{-1} x}}{\sqrt{1 - x^2}} \, dx = C - 2\sqrt{1 - x^2} - \frac{2}{3}\sqrt{f(x)} \] ### Step-by-step Solution: 1. **Separate the Integral**: We can separate the integral into two parts: \[ \int \frac{2x}{\sqrt{1 - x^2}} \, dx - \int \frac{\sqrt{\sin^{-1} x}}{\sqrt{1 - x^2}} \, dx \] Let \( I = \int \frac{2x}{\sqrt{1 - x^2}} \, dx - \int \frac{\sqrt{\sin^{-1} x}}{\sqrt{1 - x^2}} \, dx \). 2. **Evaluate the First Integral**: For the first integral, we can use the substitution \( t = \sqrt{1 - x^2} \). Then, \( dt = -\frac{x}{\sqrt{1 - x^2}} \, dx \) or \( dx = -\frac{dt}{\sqrt{1 - x^2}} \). The integral becomes: \[ I_1 = \int \frac{2x}{\sqrt{1 - x^2}} \, dx = -2\sqrt{1 - x^2} + C_1 \] 3. **Evaluate the Second Integral**: For the second integral, we can use the substitution \( u = \sin^{-1} x \), which gives \( x = \sin u \) and \( dx = \cos u \, du \). The integral becomes: \[ I_2 = \int \frac{\sqrt{u}}{\sqrt{1 - \sin^2 u}} \cos u \, du = \int \sqrt{u} \, du \] This evaluates to: \[ I_2 = \frac{2}{3} u^{3/2} + C_2 = \frac{2}{3} (\sin^{-1} x)^{3/2} + C_2 \] 4. **Combine the Results**: Now we combine \( I_1 \) and \( I_2 \): \[ I = -2\sqrt{1 - x^2} - \frac{2}{3} (\sin^{-1} x)^{3/2} + C \] 5. **Match with Given Equation**: We compare this with the original equation: \[ C - 2\sqrt{1 - x^2} - \frac{2}{3}\sqrt{f(x)} \] From this, we can identify: \[ \sqrt{f(x)} = (\sin^{-1} x)^{3/2} \] 6. **Square Both Sides**: To find \( f(x) \), we square both sides: \[ f(x) = (\sin^{-1} x)^3 \] ### Final Answer: Thus, the function \( f(x) \) is: \[ f(x) = (\sin^{-1} x)^3 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLE ( LEVEL 1 ( SINGLE CORRECT ANSWER TYPE QUESTION ))|46 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLE ( LEVEL 2 (SINGLE CORRECT ANSWER TYPE QUESTION ))|23 Videos
  • HYPERBOLA

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS |3 Videos

Similar Questions

Explore conceptually related problems

int(e^x[1+sqrt(1-x^2)sin^-1x])/sqrt(1-x^2)dx

If f(x)=sin^(-1)((sqrt(3))/(2)x-(1)/(2)sqrt(1-x^(2))),-(1)/(2)<=x<=1, then f(x) is equal to

Knowledge Check

  • int_(0)^(1//sqrt(2))(x sin^(-1)x)/(sqrt(1-x^(2)))dx=

    A
    `(pi)/(4)+(2)/(sqrt(2))`
    B
    `(pi+4)/(4sqrt(2))`
    C
    `(pi)/(4)-(2)/(sqrt(2))`
    D
    `(pi)/(4)-(1)/(sqrt(2))`
  • inte^(sin^(-1)x)((x+sqrt(1-x^2))/(sqrt(1-x^2)))dx=

    A
    `xe^(sin^(-1)x)+c`
    B
    `-xe^(sin^(-1)x)+c`
    C
    `e^(tan^(-1)x)+c`
    D
    `-e^(sin^(-1)x)+c`
  • If int(xtan^(-1))/(sqrt(1+x^(2)))dx= sqrt(1+x^(2)) f(x)+Klog(x+sqrt(x^(2)+1))+C then

    A
    `f(x)=tan^(-1)x,K=-1`
    B
    `f(x)=tan^(-1)x,K=1`
    C
    `f(x)=2tan^(-1)x,K=-1`
    D
    `f(x)=2tan^(-1)x,K=1`
  • Similar Questions

    Explore conceptually related problems

    int(sqrt(1-x^(2))+sqrt(1+x^(2)))/(sqrt(1-x^(2))sqrt(1+x^(2)))dx=

    int(2+sqrt(x))/((x+sqrt(x)+1)^(2))dx

    int(1+x+sqrt(x+x^(2)))/(sqrt(x)+sqrt(1+x))dx is equal to

    Let int(x^((1)/(2)))/(sqrt(1-x^(3)))dx=(2)/(3)g(f(x))+c then

    int x(ln(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx equals