Home
Class 12
MATHS
The value of int(pi//4)^(pi//2) cot thet...

The value of `int_(pi//4)^(pi//2) cot theta cosec^(2) theta d theta` is

A

`- (1)/(2)`

B

`1/2`

C

`1/3`

D

`-(1)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot \theta \csc^2 \theta \, d\theta \), we can follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot \theta \csc^2 \theta \, d\theta \] ### Step 2: Use substitution Let \( u = \cot \theta \). Then, we need to find \( du \): \[ \frac{du}{d\theta} = -\csc^2 \theta \quad \Rightarrow \quad du = -\csc^2 \theta \, d\theta \quad \Rightarrow \quad d\theta = -\frac{du}{\csc^2 \theta} \] ### Step 3: Change the limits of integration When \( \theta = \frac{\pi}{4} \): \[ u = \cot\left(\frac{\pi}{4}\right) = 1 \] When \( \theta = \frac{\pi}{2} \): \[ u = \cot\left(\frac{\pi}{2}\right) = 0 \] Thus, the limits change from \( \theta: \frac{\pi}{4} \to \frac{\pi}{2} \) to \( u: 1 \to 0 \). ### Step 4: Substitute into the integral Substituting \( u \) and changing the limits, we have: \[ \int_{1}^{0} u (-du) = \int_{0}^{1} u \, du \] ### Step 5: Evaluate the integral Now we can evaluate the integral: \[ \int_{0}^{1} u \, du = \left[ \frac{u^2}{2} \right]_{0}^{1} = \frac{1^2}{2} - \frac{0^2}{2} = \frac{1}{2} \] ### Final Answer Thus, the value of the integral \( \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot \theta \csc^2 \theta \, d\theta \) is: \[ \frac{1}{2} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 1) Single Correct Answer Type Questions|43 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2) Single Correct Answer Type Questions|38 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Numerical Answer Type Questions)|16 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(4))theta sec^(2)theta d theta

The value of int_(0)^(pi//2)ln((sin^(2)theta)/(cos^(3)theta))d theta is

Knowledge Check

  • int_(pi//4)^(pi+2) cos theta cosec^2 theta is equal to

    A
    `sqrt2-1`
    B
    `sqrt2+1`
    C
    `1+1/sqrt2`
    D
    `1-1/sqrt2`
  • The value of int_(-pi/4)^(pi//4) log (sec theta-tan theta) d theta is

    A
    0
    B
    `pi/4`
    C
    `pi`
    D
    `pi/2`
  • The value of int_(0)^(pi//2) sqrt( sin 2 theta) sin theta d theta is

    A
    `1`
    B
    `0`
    C
    `pi//2`
    D
    `pi//4`
  • Similar Questions

    Explore conceptually related problems

    Evaluate :int_((pi)/(2))^((pi)/(4))[cos theta*cos ec^(2)theta]*d theta

    Find the value of the following: int_(pi/4)^(pi/2) cosec^2thetacostheta d theta

    The value of int_(-pi//2)^(pi//2) log {(2-sin theta)/(2+sin theta}d theta

    The value of int_(-pi//2)^(pi//2) log((2-sintheta)/(2+sin theta)) d theta is

    Let f(x) be an integrable function defined on [a,b], b gt a gt 0 . If I_(1)=int_(pi//6)^(pi//3) f(tan theta+cos theta)sec^(2) theta d theta and, I_(2)=int_(pi//6)^(pi//3) f(tan theta +cot theta)cosec^(2) theta d theta , then (I_(1))/(I_(2))=