Home
Class 12
MATHS
If int(0)^(2) (dx)/( sqrt(x+1) + sqrt((x...

If `int_(0)^(2) (dx)/( sqrt(x+1) + sqrt((x+1)^(3) ) )` is equal to `kpi` then `k` is equal to

A

`1/2`

B

`2`

C

`1/6`

D

`1/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{2} \frac{dx}{\sqrt{x+1} + \sqrt{(x+1)^3}} \] we will use a substitution method. ### Step 1: Substitution Let \( t = x + 1 \). Then, we have: \[ dx = dt \] ### Step 2: Change the limits When \( x = 0 \), \( t = 0 + 1 = 1 \). When \( x = 2 \), \( t = 2 + 1 = 3 \). Thus, the limits of integration change from \( x = 0 \) to \( x = 2 \) into \( t = 1 \) to \( t = 3 \). ### Step 3: Rewrite the integral Now, substituting \( t \) into the integral, we have: \[ I = \int_{1}^{3} \frac{dt}{\sqrt{t} + \sqrt{t^3}} \] ### Step 4: Simplify the integrand We can simplify the integrand: \[ \sqrt{t^3} = t \sqrt{t} \] Thus, \[ I = \int_{1}^{3} \frac{dt}{\sqrt{t} + t \sqrt{t}} = \int_{1}^{3} \frac{dt}{\sqrt{t}(1 + t)} = \int_{1}^{3} \frac{1}{\sqrt{t}(1+t)} dt \] ### Step 5: Further substitution Let \( u = \sqrt{t} \). Then, \( t = u^2 \) and \( dt = 2u \, du \). ### Step 6: Change the limits again When \( t = 1 \), \( u = 1 \). When \( t = 3 \), \( u = \sqrt{3} \). Thus, the integral becomes: \[ I = \int_{1}^{\sqrt{3}} \frac{2u \, du}{u(1 + u^2)} = 2 \int_{1}^{\sqrt{3}} \frac{du}{1 + u^2} \] ### Step 7: Evaluate the integral The integral \( \int \frac{du}{1 + u^2} = \tan^{-1}(u) \). Therefore, we have: \[ I = 2 \left[ \tan^{-1}(u) \right]_{1}^{\sqrt{3}} = 2 \left( \tan^{-1}(\sqrt{3}) - \tan^{-1}(1) \right) \] ### Step 8: Calculate the values We know that: \[ \tan^{-1}(\sqrt{3}) = \frac{\pi}{3} \quad \text{and} \quad \tan^{-1}(1) = \frac{\pi}{4} \] Thus, \[ I = 2 \left( \frac{\pi}{3} - \frac{\pi}{4} \right) = 2 \left( \frac{4\pi - 3\pi}{12} \right) = 2 \left( \frac{\pi}{12} \right) = \frac{\pi}{6} \] ### Step 9: Relate to \( k\pi \) We are given that \( I = k\pi \). Therefore, \[ \frac{\pi}{6} = k\pi \] Dividing both sides by \( \pi \): \[ k = \frac{1}{6} \] ### Final Answer Thus, the value of \( k \) is \[ \boxed{\frac{1}{6}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 1) Single Correct Answer Type Questions|43 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2) Single Correct Answer Type Questions|38 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Numerical Answer Type Questions)|16 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos

Similar Questions

Explore conceptually related problems

int(x^(2)dx)/(sqrt(1+x^(3)+sqrt((1+x^(3))^(3)))) is equal to

int(dx)/((1 + sqrt(x))sqrt((x - x^2))) is equal to

Knowledge Check

  • int _(0)^(1) (xdx)/([x + sqrt(1-x^(2))]sqrt(1-x^(2))) is equal to

    A
    0
    B
    1
    C
    `pi/4`
    D
    `(pi^(2))/2`
  • int(sqrt(x))/(1+4sqrt(x^(3)))dx is equal to

    A
    `(4)/(3)[1+x^(3//4)+log_(e)(1+x^(3//4))]+C`
    B
    `(4)/(3)[1+x^(3//4)-log_(e)(1+x^(3//4))]+C`
    C
    `(4)/(3)[1+x^(3//4)+log_(e)(1+x^(3//4))]+C`
    D
    none of these
  • int(sqrt(x-1))/(x sqrt(x+1))dx " is equal to "

    A
    `"Ln "|x-sqrt(x^(2)-1)|-tan^(-1)x+c`
    B
    `"In "|x+sqrt(x^(2)-1)|-tan^(-1)x+c`
    C
    `"In "|x-sqrt(x^(2)-1)|-sec^(-1)x+c`
    D
    `"In "|x+sqrt(x^(2)-1)|-sec^(-1)x+c`
  • Similar Questions

    Explore conceptually related problems

    int(dx)/((1+sqrt(x))*sqrt(x-x^(2))) is equal to

    If the value of the integral I=int_(0)^(1)(dx)/(x+sqrt(1-x^(2))) is equal to (pi)/(k) , then the value of k is equal to

    int(x)/(sqrt(1+x^(2)+sqrt(1+x^(2))^(3)))dx is equal to

    int (x)^(1/3) (7sqrt(1+3sqrt(x^(4))))dx is equal to

    int(x)/(sqrt(1+x^(2)+sqrt((1+x^(2))^(3))))dx is equal to