Home
Class 12
MATHS
In a triangle OAC, if B is the mid point...

In a triangle OAC, if `B` is the mid point of side AC and ` vec O A= vec a ,\ vec O B= vec b ,\ ` then what is ` vec O C ?`

A

`OC=1/2(a+b)`

B

`OC=2b-2a`

C

`OC=2b-a`

D

`OC=3b-2a`

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Level-1 Single Correct Answer Type Questions)|45 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Level-2 Single Correct Answer Type Questions)|25 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|20 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

If D is the mid-point of the side BC of a triangle ABC, prove that vec AB+vec AC=2vec AD .

[vec a + vec b, vec b + vec c, vec c + vec a] = 2 [vec a, vec b, vec c]

Knowledge Check

  • Let G be the centroid of Delta ABC , If vec(AB) = vec a , vec(AC) = vec b, then the vec(AG), in terms of vec a and vec b, is

    A
    `(2)/(3) ( vec a + vec b)`
    B
    `(1)/(6) ( vec a + vec b)`
    C
    `(1)/(3) ( vec a + vec b)`
    D
    `(1)/(2) ( vec a + vec b)`
  • Similar Questions

    Explore conceptually related problems

    If O is a point in space, A B C is a triangle and D , E , F are the mid-points of the sides B C ,C A and A B respectively of the triangle, prove that vec O A + vec O B+ vec O C= vec O D+ vec O E+ vec O Fdot

    Let O be the origin and let PQR be an arbitrary triangle. The point S is such that vec O Pdot vec O Q+ vec O Rdot vec O S= vec O Rdot vec O P+ vec O Qdot vec O S= vec O Q . vec O R+ vec O Pdot vec O S Then the triangle PQ has S as its: circumcentre (b) orthocentre (c) incentre (d) centroid

    If vec a , vec b , vec c , vec d are the position vector of point A , B , C and D , respectively referred to the same origin O such that no three of these point are collinear and vec a + vec c = vec b + vec d , than prove that quadrilateral A B C D is a parallelogram.

    [[vec a + vec b-vec c, vec b + vec c-vec a, vec c + vec a-vec b is equal to

    Three vectors vec a, vec b and vec c satisfy the condition vec a + vec b + vec b + vec c = vec 0 .Evaluate the quantity mu = vec a * vec b + vec b * vec c + vec c * vec a , if | vec a | = 1 | vec b | = 4 and | vec c | = 2

    If vec a + vec b + vec c = o, prove that vec a xxvec b = vec b xxvec c = vec c xxvec a

    The vertices A , B , C of triangle A B C have respectively position vectors vec a , vec b , vec c with respect to a given origin O . Show that the point D where the bisector of /_A meets B C has position vector vec d=(beta vec b+gamma vec c)/(beta+gamma), where beta=| vec c- vec a| and, gamma=| vec a- vec b|dot Hence, deduce that incentre I has position vector (alpha vec a+beta vec b+gamma vec c)/(alpha+beta+gamma) where alpha=| vec b- vec c|