Home
Class 12
MATHS
Let P(x)=|(7,6,x-10),(2,x-10,5),(x-10,...

Let
`P(x)=|(7,6,x-10),(2,x-10,5),(x-10,3,4)|`
sum of zeros of P(x) is

A

30

B

28

C

27

D

25

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the zeros of the polynomial \( P(x) = \begin{vmatrix} 7 & 6 & x-10 \\ 2 & x-10 & 5 \\ x-10 & 3 & 4 \end{vmatrix} \), we will first compute the determinant and then analyze the resulting polynomial. ### Step 1: Compute the Determinant We can calculate the determinant using the formula for a \( 3 \times 3 \) matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] Where the matrix is: \[ A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] For our matrix: \[ A = \begin{pmatrix} 7 & 6 & x-10 \\ 2 & x-10 & 5 \\ x-10 & 3 & 4 \end{pmatrix} \] We identify: - \( a = 7 \), \( b = 6 \), \( c = x-10 \) - \( d = 2 \), \( e = x-10 \), \( f = 5 \) - \( g = x-10 \), \( h = 3 \), \( i = 4 \) Now we can compute the determinant: \[ P(x) = 7 \begin{vmatrix} x-10 & 5 \\ 3 & 4 \end{vmatrix} - 6 \begin{vmatrix} 2 & 5 \\ x-10 & 4 \end{vmatrix} + (x-10) \begin{vmatrix} 2 & x-10 \\ x-10 & 3 \end{vmatrix} \] ### Step 2: Calculate Each Minor Determinant 1. **First Minor:** \[ \begin{vmatrix} x-10 & 5 \\ 3 & 4 \end{vmatrix} = (x-10) \cdot 4 - 5 \cdot 3 = 4(x-10) - 15 = 4x - 40 - 15 = 4x - 55 \] 2. **Second Minor:** \[ \begin{vmatrix} 2 & 5 \\ x-10 & 4 \end{vmatrix} = 2 \cdot 4 - 5 \cdot (x-10) = 8 - 5(x-10) = 8 - 5x + 50 = -5x + 58 \] 3. **Third Minor:** \[ \begin{vmatrix} 2 & x-10 \\ x-10 & 3 \end{vmatrix} = 2 \cdot 3 - (x-10)(x-10) = 6 - (x-10)^2 = 6 - (x^2 - 20x + 100) = -x^2 + 20x - 94 \] ### Step 3: Substitute Back into the Determinant Equation Now substituting back into \( P(x) \): \[ P(x) = 7(4x - 55) - 6(-5x + 58) + (x-10)(-x^2 + 20x - 94) \] Calculating each term: 1. \( 7(4x - 55) = 28x - 385 \) 2. \( -6(-5x + 58) = 30x - 348 \) 3. Expanding \( (x-10)(-x^2 + 20x - 94) = -x^3 + 20x^2 - 94x + 10x^2 - 940 = -x^3 + 30x^2 - 94x - 940 \) ### Step 4: Combine All Terms Now combine all terms: \[ P(x) = (-x^3) + (28x + 30x - 94x + 30x^2) + (-385 - 348 - 940) \] This simplifies to: \[ P(x) = -x^3 + 30x^2 - 236x - 1673 \] ### Step 5: Find the Sum of the Zeros The sum of the zeros of a polynomial \( ax^3 + bx^2 + cx + d \) is given by: \[ -\frac{b}{a} \] Here, \( a = -1 \) and \( b = 30 \): \[ \text{Sum of zeros} = -\frac{30}{-1} = 30 \] ### Final Answer The sum of the zeros of \( P(x) \) is \( \boxed{30} \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|22 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (NUMERICAL ANSWER TYPE QUESTIONS)|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

Leg P(x)=|7 6x-10 2x-10 5x-10 3 4|,s u mofz e roe sofP(x)i s 30 (b) 28 (c) 27 (d) None of these

(x-4)/(x-5)+(x-6)/(x-7)=(10)/(3)

Knowledge Check

  • Let P(x)=|(x+1,2,3),(1,x+2,3),(1,2,x+3)| the product of zeros of P(x) is

    A
    0
    B
    6
    C
    `-6`
    D
    12
  • Let P(x)=|(x^(2)-13,4,2),(3,x^(2)-13,7),(6,5,x^(2)-13)| If x=-2 is a zero of P(x), then sum of the remaining five zerord id

    A
    `-2`
    B
    `0`
    C
    `2`
    D
    `3`
  • Let f(x) =|(x^3, sinx,cosx),(6,-1,0),(p,p^2,p^3)| , where p is a constant .Then d^3/(dx^3) [f(x)] at x = 0 is

    A
    p
    B
    `p+p^2`
    C
    `p+p^3`
    D
    independent of p
  • Similar Questions

    Explore conceptually related problems

    Let f(x)=(x+1)/(2x-1) and g(x)=|x|+1 Then the number of elements in the set {x:f(x)>=g(x)}*[((1)/(2),(3)/(5))uu((3)/(5),(7)/(10))uu((7)/(10)uu(4)/(5))uu((4)/(5),1)]

    Let x,x_(1),x_(2),x_(3),x_(4),...,x_(8), be 10 real zeros, of the polynomial P(x)=x^(10)+ax^(2)+bx+c where a, b, c,in R. If the value of Q(x_(1))=(p)/(q) , where p and q are coprime to each other. If Q(x_(1))=(x-x_(2))(x-x_(3))...(x-x_(8 ))andx_(1)=(1)/(2), then the value of q-p is.......

    Obtain all the zeros of the polynomial f(x)=3x^(4)+6x^(3)-2x^(2)-10x-5, if two of its zeros are sqrt((5)/(3)) and sqrt(-(5)/(3))

    Let f(x) = |{:(x^(3), sinx,cosx),(6,-1,0),(p,p^(2),p^(3)):}| where p is a constant. Then d^(3)/dx^(3){f(x)} at x=0 is

    Let P(x) is polynomial of degree 4 such that P(l) = 4, P(2) = 7, P(3) = 10, P(4) = 1. If leading coefficient of P(x) is unity then P(6) is equal to: