Home
Class 12
MATHS
Let P(x)=|(7,6,x-10),(2,x-10,5),(x-10,...

Let
`P(x)=|(7,6,x-10),(2,x-10,5),(x-10,3,4)|`
sum of zeros of P(x) is

A

30

B

28

C

27

D

25

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the zeros of the polynomial \( P(x) = \begin{vmatrix} 7 & 6 & x-10 \\ 2 & x-10 & 5 \\ x-10 & 3 & 4 \end{vmatrix} \), we will first compute the determinant and then analyze the resulting polynomial. ### Step 1: Compute the Determinant We can calculate the determinant using the formula for a \( 3 \times 3 \) matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] Where the matrix is: \[ A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] For our matrix: \[ A = \begin{pmatrix} 7 & 6 & x-10 \\ 2 & x-10 & 5 \\ x-10 & 3 & 4 \end{pmatrix} \] We identify: - \( a = 7 \), \( b = 6 \), \( c = x-10 \) - \( d = 2 \), \( e = x-10 \), \( f = 5 \) - \( g = x-10 \), \( h = 3 \), \( i = 4 \) Now we can compute the determinant: \[ P(x) = 7 \begin{vmatrix} x-10 & 5 \\ 3 & 4 \end{vmatrix} - 6 \begin{vmatrix} 2 & 5 \\ x-10 & 4 \end{vmatrix} + (x-10) \begin{vmatrix} 2 & x-10 \\ x-10 & 3 \end{vmatrix} \] ### Step 2: Calculate Each Minor Determinant 1. **First Minor:** \[ \begin{vmatrix} x-10 & 5 \\ 3 & 4 \end{vmatrix} = (x-10) \cdot 4 - 5 \cdot 3 = 4(x-10) - 15 = 4x - 40 - 15 = 4x - 55 \] 2. **Second Minor:** \[ \begin{vmatrix} 2 & 5 \\ x-10 & 4 \end{vmatrix} = 2 \cdot 4 - 5 \cdot (x-10) = 8 - 5(x-10) = 8 - 5x + 50 = -5x + 58 \] 3. **Third Minor:** \[ \begin{vmatrix} 2 & x-10 \\ x-10 & 3 \end{vmatrix} = 2 \cdot 3 - (x-10)(x-10) = 6 - (x-10)^2 = 6 - (x^2 - 20x + 100) = -x^2 + 20x - 94 \] ### Step 3: Substitute Back into the Determinant Equation Now substituting back into \( P(x) \): \[ P(x) = 7(4x - 55) - 6(-5x + 58) + (x-10)(-x^2 + 20x - 94) \] Calculating each term: 1. \( 7(4x - 55) = 28x - 385 \) 2. \( -6(-5x + 58) = 30x - 348 \) 3. Expanding \( (x-10)(-x^2 + 20x - 94) = -x^3 + 20x^2 - 94x + 10x^2 - 940 = -x^3 + 30x^2 - 94x - 940 \) ### Step 4: Combine All Terms Now combine all terms: \[ P(x) = (-x^3) + (28x + 30x - 94x + 30x^2) + (-385 - 348 - 940) \] This simplifies to: \[ P(x) = -x^3 + 30x^2 - 236x - 1673 \] ### Step 5: Find the Sum of the Zeros The sum of the zeros of a polynomial \( ax^3 + bx^2 + cx + d \) is given by: \[ -\frac{b}{a} \] Here, \( a = -1 \) and \( b = 30 \): \[ \text{Sum of zeros} = -\frac{30}{-1} = 30 \] ### Final Answer The sum of the zeros of \( P(x) \) is \( \boxed{30} \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|22 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (NUMERICAL ANSWER TYPE QUESTIONS)|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

Let P(x)=|(x+1,2,3),(1,x+2,3),(1,2,x+3)| the product of zeros of P(x) is

Leg P(x)=|7 6x-10 2x-10 5x-10 3 4|,s u mofz e roe sofP(x)i s 30 (b) 28 (c) 27 (d) None of these

(x-4)/(x-5)+(x-6)/(x-7)=(10)/(3)

Let f(x) = |{:(x^(3), sinx,cosx),(6,-1,0),(p,p^(2),p^(3)):}| where p is a constant. Then d^(3)/dx^(3){f(x)} at x=0 is

Let f(x)=(x+1)/(2x-1) and g(x)=|x|+1 Then the number of elements in the set {x:f(x)>=g(x)}*[((1)/(2),(3)/(5))uu((3)/(5),(7)/(10))uu((7)/(10)uu(4)/(5))uu((4)/(5),1)]

Obtain all the zeros of the polynomial f(x)=3x^(4)+6x^(3)-2x^(2)-10x-5, if two of its zeros are sqrt((5)/(3)) and sqrt(-(5)/(3))

MCGROW HILL PUBLICATION-DETERMINANTS-SOLVED EXAMPLES (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)
  1. Let P(x)=|(7,6,x-10),(2,x-10,5),(x-10,3,4)| sum of zeros of P(x) i...

    Text Solution

    |

  2. Let P(x)=|(x^(2)-13,4,2),(3,x^(2)-13,7),(6,5,x^(2)-13)| If x=-2 is ...

    Text Solution

    |

  3. If alpha,beta!=0 , and f(n)""=alpha^n+beta^n and |3 1+f(1)1+f(2)1+f(1)...

    Text Solution

    |

  4. Suppose a,b and c are distinct real numbers. Let Delta=|(a,a+c,a-b),...

    Text Solution

    |

  5. Suppose a,b,c and x real numbers. Let Delta=|(1+a,1+ax,1+ax^(2)),(1+...

    Text Solution

    |

  6. Suppose a,b,c,gt 1 and f(x)=|(a^(-x),a^(x),x),(b^(-3x),b^(3x),3x^(3)...

    Text Solution

    |

  7. Suppose n,m are natural numbers and f(x)=|(1,(1+x)^(m),(1+mx)^(mn)),...

    Text Solution

    |

  8. Suppose a,b,c are sides of a scalene triangle. Let Delta=|(a,b,c),(b...

    Text Solution

    |

  9. If A,B and C are angle of a triangle of a triangle ,the value of |{:(...

    Text Solution

    |

  10. Show that if x(1),x(2),x(3) ne 0 |{:(x(1) +a(1)b(1),,a(1)b(2),,a(1)b...

    Text Solution

    |

  11. Let plamda^(4)+qlamda^(3)+rlamda^(2)+slamda+t =|(lamda^(2)+3lamda,la...

    Text Solution

    |

  12. Let Delta=|(1,-4,20),(1,-2,5),(1,2,5x^(2))| Solution set of Delta=0 is

    Text Solution

    |

  13. Prove that |{:(1, a, a^(2)-bc),(1, b, b^(2)-ca), (1, c, c^(2)-ab):}|=...

    Text Solution

    |

  14. Suppose a,b,c,gt0 and a,b,c are the pth, qth, rth terms of a G.P. Let ...

    Text Solution

    |

  15. Let omega = - (1)/(2) + i (sqrt3)/(2), then the value of the determina...

    Text Solution

    |

  16. If a,b,c be respectively the p^(th),q^(th)andr^(th) terms of a H.P., ...

    Text Solution

    |

  17. If 1,omega , omega^2 are the cube roots of unity , then Delta=|(1,ome...

    Text Solution

    |

  18. Using properties of determinants, prove that |b+c q+r y+z c+a r+p ...

    Text Solution

    |

  19. If x=-2 and Delta=|(x+y,x,x),(5x+4y,4x,2x),(10x+8y,8x,3x)| then numeri...

    Text Solution

    |

  20. If a=omega!=1, is a cube root of unity b=785,c=2008i and Delta=|(a,a...

    Text Solution

    |