Home
Class 12
MATHS
Show that the lines (x-a+d)/(alpha-delt...

Show that the lines `(x-a+d)/(alpha-delta)=(y-a)/alpha=(z-a-d)/(alpha+delta)`and `(x-b+c)/(beta-gamma)=(y-b)/beta=(z-b-c)/(beta+gamma)`are coplanar.

A

0

B

1

C

`sqrt(a^(2)+c^(2))`

D

`sqrt(d^(2)+f^(2))`

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • THE DIMENSIONAL GEOMETRY

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. AIEEE/JEE MAIN PAPERS|105 Videos
  • THE DIMENSIONAL GEOMETRY

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|25 Videos
  • THE DIMENSIONAL GEOMETRY

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2 (SINGLE CORRECT ANSWER TYPE QUESTIONS))|16 Videos
  • STATISTICS

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|13 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

Show that the lines (x-a+d)/(alpha-delta)=(y-a)/(alpha)=(z-a-d)/(alpha+delta)(x-b+c)/(beta-gamma)=(y-b)/(beta)=(z-b-c)/(beta+gamma) are coplanar.

Prove that the straight lines x/alpha=y/beta=z/gamma,x/l=y/m=z/n and x/(a alpha)=y/(b beta)=z/(c gamma) will be co planar if l/alpha(b-c)+m/beta(c-a)+n/gamma(a-b)=0

Knowledge Check

  • The lines (x-a+b)/(alpha-delta)=(y-a)/alpha=(z-a-d)/(alpha+delta), (x-b+c)/(beta-gamma)=(y-b)/beta=(z-a-d)/(beta+gamma) are coplanar, and the equation to the plane in which they lie is

    A
    `x+y+z=0`
    B
    `x-y+z=0`
    C
    `x-2y+z=0`
    D
    `x+y+z=0`
  • The lines (x-a+d)/(a-delta)=(y-a)/alpha=(z-a-d)/(a+delta) and (x-b+c)/beta-r=y-b/beta=z-b-c/beta+r are coplanar and then equation to the plane in which they lie is

    A
    x+y+z=0
    B
    x-y+z=0
    C
    x-2y+z=0
    D
    x+y-2z=0
  • The lines (x-a+d)/(a-delta)=(y-a)/alpha=(z-a-d)/(a+delta) and (x-b+c)/beta-r=y-b/beta=z-b-c/beta+r are coplanar and then equation to the plane in which they lie is

    A
    x+y+z=0
    B
    x-y+z=0
    C
    x-2y+z=0
    D
    x+y-2z=0
  • Similar Questions

    Explore conceptually related problems

    If |((beta+gamma-alpha -delta)^4 , (beta+gamma-alpha-delta)^2,1),((gamma+alpha-beta-delta)^4, (gamma+alpha-beta-delta)^2,1),((alpha+beta-gamma-delta)^4, (alpha + beta-gamma-delta)^2,1)|=-k(alpha -beta)(alpha -gamma)(alpha-delta)(beta-gamma)(beta-delta)(gamma-delta) , then the value of (k)^(1//2) is ____

    If alpha,beta,gamma are different from 1 and are the roots of ax^(3)+bx^(2)+cx+d=0 and (beta-gamma)(gamma-alpha)(alpha-beta)=(25)/(2) ,then prove that det[[(alpha)/(1-alpha),(beta)/(1-beta),(gamma)/(1-gamma)(alpha)/(1-alpha),(beta)/(1-beta),(gamma)/(1-gamma)alpha,beta,gammaalpha^(2),beta^(2),gamma^(2)]]=(25d)/(2(a+b+c+d))

    Prove that |((beta+gamma-alpha-delta)^4,(beta+gamma-alpha-delta)^2,1),((gamma+alpha-beta-delta)^4,(gamma+alpha-beta-delta)^2,1),((alpha+beta-gamma-delta)^4,(alpha+beta-gamma-delta)^2,1)|=-64(alpha-beta)(alpha-gamma)(alpha-delta)(beta-delta)(gamma-delta)

    The equation of the plane containing the line (x-alpha)/l=(y-beta)/m=(z-gamma)/n is A(x-alpha)+B(y-beta)+C(z-gaama)=0 where

    If alpha, beta, gamma and delta are the roots of the equation x ^(4) -bx -3 =0, then an equation whose roots are (alpha +beta+gamma)/(delta^(2)), (alpha +beta+delta)/(gamma^(2)), (alpha +delta+gamma)/(beta^(2)), and (delta +beta+gamma)/(alpha^(2)), is: