Home
Class 10
MATHS
The value of cos^2 5^@ + cos^2 10^@ + co...

The value of `cos^2 5^@ + cos^2 10^@ + cos^2 15^@ + cos^2 20^@+ cos^2 70^@ + cos^2 75^@+ cos^2 80^@ + cos^2 85^@` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ \cos^2 5^\circ + \cos^2 10^\circ + \cos^2 15^\circ + \cos^2 20^\circ + \cos^2 70^\circ + \cos^2 75^\circ + \cos^2 80^\circ + \cos^2 85^\circ \] ### Step 1: Use the identity for cosine We can use the identity \(\cos^2 \theta = \frac{1 + \cos 2\theta}{2}\) to rewrite each term in the expression. ### Step 2: Rewrite each cosine term Applying the identity: \[ \cos^2 5^\circ = \frac{1 + \cos 10^\circ}{2} \] \[ \cos^2 10^\circ = \frac{1 + \cos 20^\circ}{2} \] \[ \cos^2 15^\circ = \frac{1 + \cos 30^\circ}{2} \] \[ \cos^2 20^\circ = \frac{1 + \cos 40^\circ}{2} \] \[ \cos^2 70^\circ = \frac{1 + \cos 140^\circ}{2} \] \[ \cos^2 75^\circ = \frac{1 + \cos 150^\circ}{2} \] \[ \cos^2 80^\circ = \frac{1 + \cos 160^\circ}{2} \] \[ \cos^2 85^\circ = \frac{1 + \cos 170^\circ}{2} \] ### Step 3: Substitute back into the expression Now substituting these back into the expression: \[ \frac{1 + \cos 10^\circ}{2} + \frac{1 + \cos 20^\circ}{2} + \frac{1 + \cos 30^\circ}{2} + \frac{1 + \cos 40^\circ}{2} + \frac{1 + \cos 140^\circ}{2} + \frac{1 + \cos 150^\circ}{2} + \frac{1 + \cos 160^\circ}{2} + \frac{1 + \cos 170^\circ}{2} \] ### Step 4: Combine the terms Combining all the terms gives: \[ \frac{8}{2} + \frac{1}{2}(\cos 10^\circ + \cos 20^\circ + \cos 30^\circ + \cos 40^\circ + \cos 140^\circ + \cos 150^\circ + \cos 160^\circ + \cos 170^\circ) \] ### Step 5: Simplify the cosine terms Notice that \(\cos 140^\circ = -\cos 40^\circ\), \(\cos 150^\circ = -\cos 30^\circ\), \(\cos 160^\circ = -\cos 20^\circ\), and \(\cos 170^\circ = -\cos 10^\circ\). Thus, the sum of the cosines becomes: \[ \cos 10^\circ + \cos 20^\circ + \cos 30^\circ + \cos 40^\circ - \cos 40^\circ - \cos 30^\circ - \cos 20^\circ - \cos 10^\circ = 0 \] ### Step 6: Final calculation So, the entire expression simplifies to: \[ \frac{8}{2} + 0 = 4 \] ### Conclusion Thus, the value of the expression is: \[ \boxed{4} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY

    MCGROW HILL PUBLICATION|Exercise Multiple Choice Questions|50 Videos
  • TRANSPARENT PAPER FOLDING

    MCGROW HILL PUBLICATION|Exercise EXAMPLE|2 Videos
  • VERIFICATION OF TRUTH OF THE STATEMENT

    MCGROW HILL PUBLICATION|Exercise Exercise|25 Videos

Similar Questions

Explore conceptually related problems

The value of cos^(2)20^(@)sin^(2)100^(@)+cos20^(@)cos100^(@) is -

Value of cos^(2) 5^(@) + cos^(2) 10^(@) + cos^(2) 80^(@) + cos ^(2) 85^(@) is

Knowledge Check

  • The value of cos^(2)10^(@)-cos10^(@) cos 50^(@) + cos^(2) 50^(@) is

    A
    `(3)/(2) (1+cos20^(@))`
    B
    `(3)/(4)+cos20^(@)`
    C
    `3/2`
    D
    `3/4`
  • cos 1^(@) + cos2^(@) + cos 3^(@) + ….+cos 180^(@) is equal to

    A
    1
    B
    0
    C
    2
    D
    `-1`
  • cos^(2)20^(@)+cos^(2)70^(@) is equal to :

    A
    `-1`
    B
    0
    C
    2
    D
    1
  • Similar Questions

    Explore conceptually related problems

    The value of cos 20^(@) cos 40^(@)cos 60^(@) cos 80^(@) is equal to

    cos^(2)5^(@) +cos^(2)10^(@) + cos^(2) 15^(@) +…..+cos^(2) 85^(@) + cos^(2) 90^(@) is equal to

    The value of cos^(2)75^(@)+cos^(2)45^(@)+cos^(2)15^(@)-cos^(2)30^(@)-cos^(2)60^(@) is

    cos^(2)10^(@)+cos^(2)50^(@)-cos10^(@)cos50^(@) is equal to

    The value of 2(cos^(2)20^(@)+cos^(2)140^(@)+cos^(2)100^(@)) is