Home
Class 10
MATHS
If (1+sinx)(1+siny)(1+sinz)=(1-sinx)(1-s...

If (1+sinx)(1+siny)(1+sinz)=(1-sinx)(1-siny)(1-sinz)=k, then k has the value

A

`pm` cos x cos y cos z

B

`pm` sin x sin y sin z

C

`pm` 3 sin x sin y sin z

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \((1 + \sin x)(1 + \sin y)(1 + \sin z) = k\) 2. \((1 - \sin x)(1 - \sin y)(1 - \sin z) = k\) We need to find the value of \(k\). ### Step 1: Multiply the two equations We can multiply both sides of the two equations together: \[ (1 + \sin x)(1 + \sin y)(1 + \sin z) \cdot (1 - \sin x)(1 - \sin y)(1 - \sin z) = k \cdot k = k^2 \] ### Step 2: Apply the identity Using the identity \( (a + b)(a - b) = a^2 - b^2 \), we can simplify the left side: - For \(1 + \sin x\) and \(1 - \sin x\): \[ (1 + \sin x)(1 - \sin x) = 1 - \sin^2 x = \cos^2 x \] - Similarly, we can apply this for \(y\) and \(z\): \[ (1 + \sin y)(1 - \sin y) = 1 - \sin^2 y = \cos^2 y \] \[ (1 + \sin z)(1 - \sin z) = 1 - \sin^2 z = \cos^2 z \] ### Step 3: Combine the results Now we can combine these results: \[ \cos^2 x \cdot \cos^2 y \cdot \cos^2 z = k^2 \] ### Step 4: Take the square root Taking the square root of both sides gives us: \[ k = \pm \cos x \cdot \cos y \cdot \cos z \] ### Final Result Thus, the value of \(k\) is: \[ k = \pm \cos x \cdot \cos y \cdot \cos z \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY

    MCGROW HILL PUBLICATION|Exercise Multiple Choice Questions|50 Videos
  • TRANSPARENT PAPER FOLDING

    MCGROW HILL PUBLICATION|Exercise EXAMPLE|2 Videos
  • VERIFICATION OF TRUTH OF THE STATEMENT

    MCGROW HILL PUBLICATION|Exercise Exercise|25 Videos

Similar Questions

Explore conceptually related problems

(1)/(1-2sinx)

intsqrt((1-sinx)/(1+sinx)dx

Knowledge Check

  • If y=(2+sinx)/(1+2sinx)," and "(1+2sinx)^(2)y_(1)=kcosx," then "k=

    A
    `-2`
    B
    `-3`
    C
    1
    D
    4
  • intsqrt((1+sinx)/(1-sinx))dx=

    A
    `tanx-secx+c`
    B
    `cosx+cotx+c`
    C
    `log[sin((pi)/(4)-(x)/(2))]+c`
    D
    `-log(1-sinx)+c`
  • 1-(sin^(2)y)/(1+cosy)+(1+cosy)/(siny)-(siny)/(1-cosy)=?

    A
    0
    B
    1
    C
    sin y
    D
    cos y
  • Similar Questions

    Explore conceptually related problems

    int(1+sinx)/(sinx(1+cosx))dx

    tan^-1""sqrt((1+sinx)/(1-sinx))

    d/dx[sqrt((1+sinx)/(1-sinx))]

    cosx{(cosx)/(1-sinx)+(1-sinx)/(cosx)}, is

    int ((1+ sinx))/((1- sinx)) dx=?