Home
Class 11
PHYSICS
The angle between A=hat(i)+hat(j) " and ...

The angle between `A=hat(i)+hat(j) " and " B=hat(i)-hat(j)` is

A

`45^(@)`

B

`90^(@)`

C

`-45^(@)`

D

`180^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the vectors \( \mathbf{A} = \hat{i} + \hat{j} \) and \( \mathbf{B} = \hat{i} - \hat{j} \), we can use the formula for the cosine of the angle between two vectors: \[ \cos \theta = \frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{A}| |\mathbf{B}|} \] ### Step 1: Calculate the dot product \( \mathbf{A} \cdot \mathbf{B} \) The dot product of two vectors \( \mathbf{A} \) and \( \mathbf{B} \) is given by: \[ \mathbf{A} \cdot \mathbf{B} = (\hat{i} + \hat{j}) \cdot (\hat{i} - \hat{j}) \] Calculating this, we have: \[ \mathbf{A} \cdot \mathbf{B} = \hat{i} \cdot \hat{i} + \hat{i} \cdot (-\hat{j}) + \hat{j} \cdot \hat{i} + \hat{j} \cdot (-\hat{j}) \] Using the properties of dot products: \[ = 1 + 0 + 0 - 1 = 0 \] ### Step 2: Calculate the magnitudes \( |\mathbf{A}| \) and \( |\mathbf{B}| \) The magnitude of vector \( \mathbf{A} \) is: \[ |\mathbf{A}| = \sqrt{(\hat{i})^2 + (\hat{j})^2} = \sqrt{1^2 + 1^2} = \sqrt{2} \] The magnitude of vector \( \mathbf{B} \) is: \[ |\mathbf{B}| = \sqrt{(\hat{i})^2 + (-\hat{j})^2} = \sqrt{1^2 + (-1)^2} = \sqrt{2} \] ### Step 3: Substitute into the cosine formula Now we can substitute the values into the cosine formula: \[ \cos \theta = \frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{A}| |\mathbf{B}|} = \frac{0}{\sqrt{2} \cdot \sqrt{2}} = \frac{0}{2} = 0 \] ### Step 4: Determine the angle \( \theta \) Since \( \cos \theta = 0 \), we find that: \[ \theta = 90^\circ \] ### Final Answer The angle between the vectors \( \mathbf{A} \) and \( \mathbf{B} \) is \( 90^\circ \). ---

To find the angle between the vectors \( \mathbf{A} = \hat{i} + \hat{j} \) and \( \mathbf{B} = \hat{i} - \hat{j} \), we can use the formula for the cosine of the angle between two vectors: \[ \cos \theta = \frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{A}| |\mathbf{B}|} \] ### Step 1: Calculate the dot product \( \mathbf{A} \cdot \mathbf{B} \) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MECHANICAL PROPERTIES OF SOLIDS

    NCERT EXEMPLAR ENGLISH|Exercise LONG SHORT ANSWER TYPE QUESTION|16 Videos
  • MOTION IN A STRAIGHT LINE

    NCERT EXEMPLAR ENGLISH|Exercise Very Short Answer Type Qns|14 Videos

Similar Questions

Explore conceptually related problems

Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) = - hat(i) + hat(j) - 2hat(k)

Find the angle between the vectors a+b and a-b, if a=2hat(i)-hat(j)+3hat(k) and b=3hat(i)+hat(j)-2hat(k) .

Knowledge Check

  • If the angle between the vectors hat(i) + hat(k) and hat(i) + hat(j) + lambda hat(k) is ( pi )/( 3) , then the values of lambda are

    A
    0,2
    B
    0,-2
    C
    0,-4
    D
    2,-2
  • The angle between the lines overset(to)( r)=(4 hat(i) - hat(j) )+ lambda(2 hat(i) + hat(j) - 3hat(k) ) and overset(to) (r )=( hat(i) -hat(j) + 2 hat(k) ) + mu (hat(i) - 3 hat(j) - 2 hat(k) ) is

    A
    `pi/6`
    B
    `pi/3`
    C
    `pi/4`
    D
    `pi/2`
  • Similar Questions

    Explore conceptually related problems

    If hat(i), hat(j) and hat(k) represent unit vectors along the x, y and z axes respectively, then the angle theta between the vectors (hat(i) + hat(j) + hat(k)) and (hat(i) + hat(j)) is equal to :

    If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :

    Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .

    Find the angle between the vectors hat(i)+3hat(j)+7hat(k) and 7hat(i)-hat(j)+8hat(k) .

    What is the angle between hat(i) + hat(j) with the x - axis ?

    Find the angle between the vectors hat i-2 hat j+3k and 3 hat i-2 hat j+k