Home
Class 9
MATHS
If p(x) =x^(2)-4x+3, then evaluate p(...

If `p(x) =x^(2)-4x+3,` then evaluate `p(2) -p(-1)+p((1)/(2))`.

Text Solution

AI Generated Solution

To solve the problem, we need to evaluate \( p(2) - p(-1) + p\left(\frac{1}{2}\right) \) for the polynomial \( p(x) = x^2 - 4x + 3 \). ### Step-by-Step Solution: 1. **Calculate \( p(2) \)**: \[ p(2) = 2^2 - 4 \cdot 2 + 3 \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • POLYNOMIALS

    NCERT EXEMPLAR ENGLISH|Exercise EXERCISE 2.4 Long Answer type Questions|9 Videos
  • POLYNOMIALS

    NCERT EXEMPLAR ENGLISH|Exercise EXERCISE 2.2 very short Answer type Questions|32 Videos
  • NUMBER SYSTEMS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|7 Videos
  • QUADRILATERALS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|18 Videos

Similar Questions

Explore conceptually related problems

If P(x)=x^(3)-1 then the value of P(1)+P(-1) is

If p(x)=4x^(2)-3x+6 find : (i) p(4) (ii) p(-5)

if p = (4xy)/(x + y) , find the value of (p+2x)/(p-2x) + (p+2y)/(p-2y) .

If p(x)=x^(3)+2x^(2)+x find : (i) p(0) (ii)p(2)

BY Remainder theorem , find the remainder when p(x) is divided by g(x) (i) p(x) =x^(3)-2x^(2)-4x-1, g(x)=x+1 (ii) p(x) =x^(3)-3x^(2)+4x+50, g(x) =x-3

check whether p(x) is a multiple of g(x) or not (i) p(x) =x^(3)-5x^(2)+4x-3,g(x) =x-2. (ii) p(x) =2x^(3)-11x^(2)-4x+5,g(x)=2x+1

If each pair of the three equations x^(2) - p_(1)x + q_(1) =0, x^(2) -p_(2)c + q_(2)=0, x^(2)-p_(3)x + q_(3)=0 have common root, prove that, p_(1)^(2)+ p_(2)^(2) + p_(3)^(2) + 4(q_(1)+q_(2)+q_(3)) =2(p_(2)p_(3) + p_(3)p_(1) + p_(1)p_(2))

The least value of the quadratic polynomial, f(x) = (2p^(2) + 1) x^(2) + 2 (4p^(2) - 1) x + 4(2p^(2)+1) for real values of p and x is

If p(x)=x^(5)+4x^(4)-3x^(2)+1 " and" g(x)=x^(2)+2 , then divide p(x) by g(x) and find quotient q(x) and remainder r(x).

If x^p occurs in the expansion of (x^2 + (1)/(x) )^(2n) , prove that its coefficient is ((2n)!)/( [ (1)/(3) (4n - p)!][(1)/(3) (2n + p) !])