Home
Class 10
MATHS
(sintheta)/(1+costheta) + (1+costheta)/(...

`(sintheta)/(1+costheta) + (1+costheta)/(sintheta) = 2 cosec theta`

Text Solution

Verified by Experts

LHS= `(sintheta)/(1+costheta) + (1+costheta)/(sintheta) = (sin^(2)theta+ (1+costheta)^(2))/(sintheta(1+costheta))`
`=(sin^(2)theta + 1 + cos^(2)theta+ 2 costheta)/(sintheta(1+costheta))` `[therefore (a+b)^(2)=a^(2)+b^(2)+2ab)]`
`=(1+1+2costheta)/(sintheta(1+costheta))` `[therefore sin^(2)theta + cos^(2)theta=1]`
`=(2(1+costheta))/(sintheta(1+costheta))= 2/(sintheta)`
`=2cosectheta = RHS` `[therefore cosectheta=1/sintheta]`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTRODUCTION TO TRIGoNOMETRY AND ITS APPLICATIONS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPES QUESTIONS|18 Videos
  • INTRODUCTION TO TRIGoNOMETRY AND ITS APPLICATIONS

    NCERT EXEMPLAR ENGLISH|Exercise VERY SHORT ANSWER TYPE QUESTIONS|11 Videos
  • COORDINATE GEOMETRY

    NCERT EXEMPLAR ENGLISH|Exercise Exercise 7.4 Long Answer Type Questions|6 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    NCERT EXEMPLAR ENGLISH|Exercise Exercise 3.4 Long Answer Type Questions|13 Videos

Similar Questions

Explore conceptually related problems

(sintheta)/(1+costheta)+(1+costheta)/(sintheta)=2cosectheta

Prove that : (1+sintheta)/(costheta)+(costheta)/(1+sintheta)=2sectheta

Prove the following identities: (costheta)/(1-sintheta)+(costheta)/(1+sintheta)=2sectheta

Prove the following identities: (costheta)/(1-sintheta)+(costheta)/(1+sintheta)=2sectheta

(1+costheta+sintheta)/(1+costheta-sintheta)=(1+sintheta)/(costheta)

If 0^(@)lethetale90^(@) , then solve the following equations : (i) (costheta)/(1-sintheta)+(costheta)/(1+sintheta)=4 (ii) (cos^(2)theta-3costheta+2)/(sin^(2)theta)=1 (iii) (costheta)/("cosec"theta+1)+(costheta)/("cosec"theta-1)=2

(sintheta)/(1+costheta) is equal to (a) (1+costheta)/(sintheta) (b) (1-costheta)/(costheta) (c) (1-costheta)/(sintheta) (d) (1-sintheta)/(costheta)

Prove that: (i) (costheta)/(1-sintheta)=(1+sintheta)/(costheta) (ii) (1+costheta-sin^(2)theta)/(sintheta+sinthetacostheta)=cottheta (iii) 1+(tan^(2)theta)/(1+sectheta)=sectheta

If alpha, beta are roots of x^2 sintheta-(costhetasintheta+1)x+costheta=0 where alphaltbeta and thetaepsilon(0,pi//4) then value of sum_(n=0)^oo(alpha^n +((-1)^n)/beta^n) (A) (1-costheta)/(sintheta)+(1-sintheta)/(costheta) (B) 1/(1+costheta)+1/(1-sintheta) (C) 1/(1-costheta)+1/(1-sintheta) (D) 1/(1-costheta) +1/(1+sintheta)

Prove that : (1-costheta)/(sintheta)+(sintheta)/(1-costheta)=2"cosec "theta