Home
Class 11
MATHS
If sin(theta+alpha)=aa n dsin(theta+beta...

If `sin(theta+alpha)=aa n dsin(theta+beta)=b ,` prove that `cos2(alpha-beta)-4a bcos(alpha-beta)=1-2a^2-2b^2`

Text Solution

AI Generated Solution

To prove the equation \( \cos(2(\alpha - \beta)) - 4ab \cos(\alpha - \beta) = 1 - 2a^2 - 2b^2 \), we start with the given expressions: 1. **Given:** \[ \sin(\theta + \alpha) = a \] \[ \sin(\theta + \beta) = b ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|31 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|9 Videos
  • STRAIGHT LINES

    NCERT EXEMPLAR ENGLISH|Exercise MATCHING THE COLUMN|3 Videos

Similar Questions

Explore conceptually related problems

If sin(theta+alpha)=a, a n dsin(theta+beta)=b , prove that cos2(alpha-beta)-4a bcos(alpha-beta)=1-2a^2-2b^2

If cos(theta-alpha) = a and cos(theta-beta) = b then the value of sin^2(alpha-beta) + 2ab cos(alpha-beta)

If sin(theta+alpha)=a,cos^(2)(theta+beta)=b, then sin(alpha-beta)=

If cos (theta - alpha) = a and sin(theta - beta) = b (0 lt theta - alpha, theta - beta lt pi//2) , then prove that cos^(2) (alpha - beta) + 2ab sin (alpha - beta) = a^(2) + b^(2)

If sin alpha=4/5 and cos beta =5/13, prove that cos ((alpha-beta)/2)=8/sqrt 65.

If sin alpha + sin beta = a and cos alpha + cos beta = b, prove that : cos (alpha-beta) = 1/2 (a^2 + b^2 -2)

If alpha and beta are the two different roots of equations a cos theta+b sin theta=c , prove that (a) tan (alpha+beta)=(2ab)/(a^(2)-b^(2)) (b) cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))

If alpha+beta= 60^0 , prove that cos^2 alpha + cos^2 beta - cosalpha cos beta = 3/4 .

If : sin (alpha + beta)=1 and sin (alpha-beta)=(1)/(2), "then" : tan (alpha+2beta)*tan(2alpha+beta)=

If alpha, beta are the roots of the equation a cos theta + b sin theta = c , then prove that cos(alpha + beta) = (a^2 - b^2)/(a^2+b^2) .