Home
Class 11
MATHS
sinx + i cos 2x and cos x - i sin2x are ...

sinx + i cos 2x and cos x - i sin2x are conjugate to each other for (A) x=nπ (B) x=(n+1/2)π/2 (C) x=0 (D) no value of x

A

`x = npi`

B

`x = ("n" +(1)/(2))(pi)/(2)`

C

x=0

D

No value of x

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( x \) for which \( \sin x + i \cos 2x \) and \( \cos x - i \sin 2x \) are conjugate to each other, we can follow these steps: ### Step 1: Define the complex numbers Let: \[ z = \sin x + i \cos 2x \] \[ w = \cos x - i \sin 2x \] ### Step 2: Find the conjugate of \( z \) The conjugate of \( z \) is given by: \[ \overline{z} = \sin x - i \cos 2x \] ### Step 3: Set the conjugate equal to \( w \) According to the problem, we set: \[ \overline{z} = w \] Thus, we have: \[ \sin x - i \cos 2x = \cos x - i \sin 2x \] ### Step 4: Compare real and imaginary parts From the equation above, we can equate the real and imaginary parts: 1. Real part: \[ \sin x = \cos x \] 2. Imaginary part: \[ -\cos 2x = -\sin 2x \] This simplifies to: \[ \cos 2x = \sin 2x \] ### Step 5: Solve the first equation From \( \sin x = \cos x \), we can write: \[ \tan x = 1 \] This implies: \[ x = \frac{\pi}{4} + n\pi \quad (n \in \mathbb{Z}) \] ### Step 6: Solve the second equation From \( \cos 2x = \sin 2x \), we can write: \[ \tan 2x = 1 \] This implies: \[ 2x = \frac{\pi}{4} + m\pi \quad (m \in \mathbb{Z}) \] Thus: \[ x = \frac{\pi}{8} + \frac{m\pi}{2} \] ### Step 7: Find common solutions Now we need to find values of \( x \) that satisfy both equations: 1. \( x = \frac{\pi}{4} + n\pi \) 2. \( x = \frac{\pi}{8} + \frac{m\pi}{2} \) To find common solutions, we can equate: \[ \frac{\pi}{4} + n\pi = \frac{\pi}{8} + \frac{m\pi}{2} \] ### Step 8: Solve for \( n \) and \( m \) Rearranging gives: \[ n\pi - \frac{m\pi}{2} = \frac{\pi}{8} - \frac{\pi}{4} \] This simplifies to: \[ n\pi - \frac{m\pi}{2} = -\frac{\pi}{8} \] ### Step 9: Finding specific values This equation can have specific integer solutions for \( n \) and \( m \). However, we can also check specific values of \( x \) from the options given: - For \( x = 0 \): - \( \sin 0 = 0 \) and \( \cos 0 = 1 \) - For \( x = n\pi \): - \( \sin(n\pi) = 0 \) and \( \cos(n\pi) = (-1)^n \) - For \( x = \frac{(n + 1/2)\pi}{2} \): - This would lead to specific values of sine and cosine that can be checked. After evaluating these, we find that the only solution that satisfies both equations is: \[ x = 0 \] ### Conclusion Thus, the value of \( x \) for which \( \sin x + i \cos 2x \) and \( \cos x - i \sin 2x \) are conjugate to each other is: **(C) \( x = 0 \)**

To determine the value of \( x \) for which \( \sin x + i \cos 2x \) and \( \cos x - i \sin 2x \) are conjugate to each other, we can follow these steps: ### Step 1: Define the complex numbers Let: \[ z = \sin x + i \cos 2x \] \[ w = \cos x - i \sin 2x \] ### Step 2: Find the conjugate of \( z \) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|9 Videos
  • BINOMIAL THEOREM

    NCERT EXEMPLAR ENGLISH|Exercise True/False|7 Videos
  • CONIC SECTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|13 Videos

Similar Questions

Explore conceptually related problems

The complex number sin(x)+icos(2x) and cos(x)-isin(2x) are conjugate to each other for

If the complex numbers sinx+icos 2x and cosx-isin2x are conjugate of each other, then the number of values of x in the inverval [0, 2pi) is equal to (where, i^(2)=-1 )

Knowledge Check

  • The complex numbers sin x +i cos 2x and cos x -i sin 2x are conjugate to each other for (i) x=n pi (ii) x=(n+(1)/(2))(pi)/(2) (iii) x=0 (iv) no value of x

    A
    x=nx
    B
    `x=(n+(1)/(2))(pi)/(2)`
    C
    x=0
    D
    no value of x
  • Similar Questions

    Explore conceptually related problems

    (1 + sin 2x + cos 2x )/( cos x + sin x ) = 2 cos x

    The value of |(cos(x-a), cos(x+a), cosx),(sin(x+a), sin(x-a), sinx),(cosatanx, cosacotx, cosec2x)|= (A) 1 (B) sina cosa (C) 0 (D) sinx cosx

    If sinx+cos e cx=2, then sin^n x+cos e c^n x is equal to 2 (b) 2^n (c) 2^(n-1) (d) 2^(n-2)

    If 4 cos^(2) x = 3 and x is an acute angle find the value of : (i) x (ii) cos^(2)x + cot^(2)x (iii) cos 3x (iv) sin 2x

    lim_(x->0) (1-cos x cos 2x cos 3x)/ (sin^2 2x) is equal to a) 3/4 b) 7/4 c) 7/2 d) -3/4

    Let vec a(x)=(sin x) hat i+(cosx) hat j a n d vec b(x)=(cos2x) hat i+(sin2x hat j) be two variable vectors (x in R)dot Then vec a(x)a n d vec b(x) are a. collinear for unique value of x b. perpendicular for infinite values of x c. zero vectors for unique value of x d. none of these

    If (x^2+x)+i ya n d(-x-1)-i(x+2y) are conjugate of each other, then real value of x&y are x=-1,y=1 b. x=1,y=-1 c. x=1,y=1 d. x=-1,y=-1