Home
Class 12
MATHS
If x=3sint-sin3t , y=3cost-cos3t , find ...

If `x=3sint-sin3t` , `y=3cost-cos3t` , find `(dy)/(dx)` at `t=pi/3` .

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) at \(t = \frac{\pi}{3}\) given the parametric equations \(x = 3\sin t - \sin 3t\) and \(y = 3\cos t - \cos 3t\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(t\) Given: \[ x = 3\sin t - \sin 3t \] Differentiating \(x\) with respect to \(t\): \[ \frac{dx}{dt} = 3\cos t - \frac{d}{dt}(\sin 3t) \] Using the chain rule for \(\sin 3t\): \[ \frac{d}{dt}(\sin 3t) = 3\cos 3t \] Thus: \[ \frac{dx}{dt} = 3\cos t - 3\cos 3t \] ### Step 2: Differentiate \(y\) with respect to \(t\) Given: \[ y = 3\cos t - \cos 3t \] Differentiating \(y\) with respect to \(t\): \[ \frac{dy}{dt} = 3(-\sin t) - \frac{d}{dt}(\cos 3t) \] Using the chain rule for \(\cos 3t\): \[ \frac{d}{dt}(\cos 3t) = -3\sin 3t \] Thus: \[ \frac{dy}{dt} = -3\sin t + 3\sin 3t \] ### Step 3: Find \(\frac{dy}{dx}\) Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{-3\sin t + 3\sin 3t}{3\cos t - 3\cos 3t} \] This simplifies to: \[ \frac{dy}{dx} = \frac{-\sin t + \sin 3t}{\cos t - \cos 3t} \] ### Step 4: Evaluate at \(t = \frac{\pi}{3}\) Now we will substitute \(t = \frac{\pi}{3}\): 1. Calculate \(\sin\) and \(\cos\) values: - \(\sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}\) - \(\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}\) - \(\sin\left(3 \cdot \frac{\pi}{3}\right) = \sin(\pi) = 0\) - \(\cos\left(3 \cdot \frac{\pi}{3}\right) = \cos(\pi) = -1\) Substituting these values into \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{-\frac{\sqrt{3}}{2} + 0}{\frac{1}{2} - (-1)} \] This simplifies to: \[ \frac{dy}{dx} = \frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2} + 1} = \frac{-\frac{\sqrt{3}}{2}}{\frac{3}{2}} = -\frac{\sqrt{3}}{3} \] ### Final Answer Thus, the value of \(\frac{dy}{dx}\) at \(t = \frac{\pi}{3}\) is: \[ \frac{dy}{dx} = -\frac{1}{\sqrt{3}} \]

To find \(\frac{dy}{dx}\) at \(t = \frac{\pi}{3}\) given the parametric equations \(x = 3\sin t - \sin 3t\) and \(y = 3\cos t - \cos 3t\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(t\) Given: \[ x = 3\sin t - \sin 3t \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

If x=3sint-sin3t ,y=3cos t-cos3t ,"find "(dy)/(dx)" at "t=pi/3dot

If x=3sint-sin3t ,y=3cos t-cos3t ,"f i n d"(dy)/(dx)"a t"t=pi/3dot

If x=3sint-sin3t ,y=3cos t-cos3t ,"f i n d"(dy)/(dx)"a t"t=pi/3dot

If x=10(t-sint) , y=12(1-cost) , find (dy)/(dx) .

If x=a(t-sint), y=a(1-cost) then find (d^2y)/(dx^2) .

If x=2cost-cos2t ,\ \ y=2sint-sin2t , find (d^2y)/(dx^2) at t=pi/2 .

x=a (t-sin t) , y =a (1-cos t) find dy/dx

x=sqrt(sin 2t),y=sqrt(cos 2 t) find dy/dx

x=a cos t, y=b sin t find dy/dx

If x=2cost-cos2t ,y=2sint-sin2t ,"f i n d"(d^2y)/(dx^2)"a t"t=pi/2dot