Home
Class 10
MATHS
Sides of a triangular field are 15 m, 16...

Sides of a triangular field are 15 m, 16m and 17m. With the three corners of the field a cow, a buffalo and a horse are tied separately with ropes of length 7m each to graze in the field. Find the area of the field which cannot be grazed by the three animals.

Text Solution

AI Generated Solution

To solve the problem, we need to find the area of the triangular field that cannot be grazed by the three animals tied at the corners with ropes of length 7 meters each. Here’s a step-by-step solution: ### Step 1: Calculate the Area of the Triangular Field We can use Heron's formula to find the area of the triangle. First, we need to calculate the semi-perimeter (s) of the triangle. The sides of the triangle are: - a = 15 m - b = 16 m ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • AREAS RELATED TO CIRCLE

    NCERT EXEMPLAR ENGLISH|Exercise Short Answer Type Questions|16 Videos
  • ARITHMETIC PROGRESSIONS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer Type Questions|10 Videos

Similar Questions

Explore conceptually related problems

Sides of a right triangular field are 25m, 24m and 7m. At the three corners of the field, a cow, a buffalo and a horse are tied separately with ropes of 3.5 m each to graze in the field. Find the area of the field that cannot be grazed by these animals.

A rectangular field is of length 60 m and breadth 35 m. Find the area of the field.

A cow is tied with a rope of length 14m at the corner of a rectangular field of dimensions 20mxx16m . Find the area of the field in which the cow can graze.

The perimeter of a triangular field is 144 m and the ratio of the sides is 3:4:5. Find the area of the field.

There is a rectangular field of size 94\ mxx32\ mdot Three roads each of 2 m width pass through the field such that two roads are parallel to the breadth of the field and the third is parallel to the length. Calculate: (a) Area of the field covered by the three roads (b) Area of the field not covered by the roads.

The perimeter of a triangular field is 540 m and its sides are in the ratio 25 : 17 : 12. Find the area of the triangle.

A rectangular field is 112 m long and 62 m broad. A cubical tank of edge 6 m is dug at each of the four corners of the field and the earth so removed is evenly spread on the remaining field. Find the rise in level.

A rectangular field is 112m long and 62m broad. A cubical tank of edge 6m is dug at each of the four corners of the field and the earth so removed is evenly spread on the remaining field. Find the rise in level.

Length and breadth of a rectangular field are 50 m and 15 mrespectively. Find the ratio of the length to the breadth of the field.

Find the area of a square field if its each side is 10 3/4 m long.