Home
Class 12
MATHS
If x=3sint-sin3t ,y=3cos t-cos3t ,"f i n...

If `x=3sint-sin3t ,y=3cos t-cos3t ,"f i n d"(dy)/(dx)"a t"t=pi/3dot`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) at \(t = \frac{\pi}{3}\) given the parametric equations \(x = 3\sin t - \sin 3t\) and \(y = 3\cos t - \cos 3t\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(t\) We start with the equation for \(x\): \[ x = 3\sin t - \sin 3t \] Differentiating both sides with respect to \(t\): \[ \frac{dx}{dt} = 3\cos t - 3\cos 3t \] This can be simplified to: \[ \frac{dx}{dt} = 3(\cos t - \cos 3t) \] ### Step 2: Differentiate \(y\) with respect to \(t\) Now, we differentiate \(y\): \[ y = 3\cos t - \cos 3t \] Differentiating both sides with respect to \(t\): \[ \frac{dy}{dt} = -3\sin t + 3\sin 3t \] This can be simplified to: \[ \frac{dy}{dt} = 3(\sin 3t - \sin t) \] ### Step 3: Find \(\frac{dy}{dx}\) Using the chain rule, we can express \(\frac{dy}{dx}\) as: \[ \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{3(\sin 3t - \sin t)}{3(\cos t - \cos 3t)} \] The \(3\) cancels out: \[ \frac{dy}{dx} = \frac{\sin 3t - \sin t}{\cos t - \cos 3t} \] ### Step 4: Evaluate \(\frac{dy}{dx}\) at \(t = \frac{\pi}{3}\) Now we substitute \(t = \frac{\pi}{3}\): \[ \frac{dy}{dx} \bigg|_{t = \frac{\pi}{3}} = \frac{\sin(3 \cdot \frac{\pi}{3}) - \sin(\frac{\pi}{3})}{\cos(\frac{\pi}{3}) - \cos(3 \cdot \frac{\pi}{3})} \] Calculating the sine and cosine values: \[ \sin(\pi) = 0, \quad \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \] \[ \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}, \quad \cos(\pi) = -1 \] Substituting these values: \[ \frac{dy}{dx} \bigg|_{t = \frac{\pi}{3}} = \frac{0 - \frac{\sqrt{3}}{2}}{\frac{1}{2} - (-1)} = \frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2} + 1} \] This simplifies to: \[ \frac{dy}{dx} \bigg|_{t = \frac{\pi}{3}} = \frac{-\frac{\sqrt{3}}{2}}{\frac{3}{2}} = -\frac{\sqrt{3}}{3} \] ### Final Answer Thus, the value of \(\frac{dy}{dx}\) at \(t = \frac{\pi}{3}\) is: \[ \frac{dy}{dx} \bigg|_{t = \frac{\pi}{3}} = -\frac{1}{\sqrt{3}} \]

To find \(\frac{dy}{dx}\) at \(t = \frac{\pi}{3}\) given the parametric equations \(x = 3\sin t - \sin 3t\) and \(y = 3\cos t - \cos 3t\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(t\) We start with the equation for \(x\): \[ x = 3\sin t - \sin 3t \] Differentiating both sides with respect to \(t\): ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

If x=3sint-sin3t ,y=3cos t-cos3t ,"find "(dy)/(dx)" at "t=pi/3dot

If x=3sint-sin3t , y=3cost-cos3t , find (dy)/(dx) at t=pi/3 .

If x=2cost-cos2t ,y=2sint-sin2t ,"f i n d"(d^2y)/(dx^2)"a t"t=pi/2dot

x=a (t-sin t) , y =a (1-cos t) find dy/dx

x=a(t-sin t),y=a(1+cos t) then (dy)/(dx) =

If x=(1+logt)/(t^2),y=(3+2logt)/t ,"f i n d"(dy)/(dx)dot

If x=a sin t,y=b cos t, then (dy)/(dx)=

If x=2cost-cos2t ,\ \ y=2sint-sin2t , find (d^2y)/(dx^2) at t=pi/2 .

If x = a ( t+ sin t) and y = a (1- cos t) " find " (dy)/(dx)

x=a cos t, y=b sin t find dy/dx