Home
Class 12
MATHS
Express sin^(-1)((sin x+ cos x)/(sqrt2))...

Express `sin^(-1)((sin x+ cos x)/(sqrt2))`, where `-(pi)/(4) lt x lt (pi)/(4)`, in the simplest form.

Text Solution

Verified by Experts

`=sin^(-1)((sinx)/(sqrt(2))+(cosx)/(sqrt(2)))`if `(pi)/(4)lt xlt (pi)/(4)`
`=sin^(-1)(sinxcos.(pi)/(4)+cosxsin.(pi)/(4))` if `-(pi)/(4)+(pi)/(4)ltx+(pi)/(4)lt(pi)/(4)+(pi)/(4)`
`=sin^(-1)(sin(x+(pi)/(4)))` if `0lt(x+(pi)/(4))lt(pi)/(2)`i.e. principal values
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SAMPLE PAPER 2019

    XII BOARD PREVIOUS YEAR PAPER ENGLISH|Exercise Section B 21 B|1 Videos
  • SAMPLE PAPER 2019

    XII BOARD PREVIOUS YEAR PAPER ENGLISH|Exercise Section B|4 Videos
  • SAMPLE PAPER 2019

    XII BOARD PREVIOUS YEAR PAPER ENGLISH|Exercise Answer the following questions 18Bs|1 Videos
  • EXAM REVISION SERIES

    XII BOARD PREVIOUS YEAR PAPER ENGLISH|Exercise All Questions|19 Videos
  • XII Boards

    XII BOARD PREVIOUS YEAR PAPER ENGLISH|Exercise All Questions|255 Videos

Similar Questions

Explore conceptually related problems

if cos x= (-sqrt(15))/(4) " and " (pi)/(2) lt x lt pi find the value of sin x .

If f(theta) = sin(tan^(-1)(sintheta/sqrt(cos2theta))) , where -pi/4 lt theta lt pi/4, then the value of d/(d(tantheta))\ f(theta) is

Knowledge Check

  • If tan x= (3)/(4) " where " pi lt x lt (3pi)/( 2), value of tan ""(x)/(2) is

    A
    `3`
    B
    ` -3`
    C
    ` (1)/(3)`
    D
    `- (1)/(3)`
  • Similar Questions

    Explore conceptually related problems

    If cos x-sinx=-(5)/(4) , where (pi)/(2)ltx lt(3pi)/(4) , then cot((x)/(2)) is equal to

    If cos x + sin x = a , (- (pi)/(2) lt x lt - (pi)/(4)) , then cos 2 x is equal to

    Solve sin 3x = - (1)/(sqrt2) , 0 lt x lt 2pi.

    If cos theta - sin theta = (1)/(5) , where 0 lt theta lt (pi)/(4) , then

    Solve for x , sin x = ( -sqrt3)/(2), (0 lt x lt 2pi).

    Prove that sin^(-1). ((x + sqrt(1 - x^(2))/(sqrt2)) = sin^(-1) x + (pi)/(4) , where - (1)/(sqrt2) lt x lt(1)/(sqrt2)

    Prove that sin^(-1) {(sqrt(1 + x) + sqrt(1 - x))/(2)} = (pi)/(4) + (cos^(-1) x)/(2), 0 lt x lt 1