Home
Class 10
MATHS
A wooden article was made by scooping ou...

A wooden article was made by scooping out a hemisphere from each end of a solid cylinder. If the height of the cylinder is 10 cm, and its base is of radius 3.5 cm, find the total surface area of the article.

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SAMPLE PAPER 2019

    X BOARD PREVIOUS YEAR PAPER ENGLISH|Exercise SECTION-C|5 Videos

Similar Questions

Explore conceptually related problems

A wooden article was made by scooping out a hemisphere from each end of a solid cylinder, as shown in Fig. . If the height of the cylinder is 10 cm, and its base is of radius 3.5 cm, find the total surface area of the article.

The height of a circular cylinder is 20 cm and the radius of its base is 7 cm. Find : the total surface area.

Knowledge Check

  • If the curved surface area of a cylinder is 440 cm^(2) and the height of the cylinder is 10 cm, then what is the radius (in cm) of the cylinder?

    A
    7
    B
    14
    C
    21
    D
    `3.5`
  • Similar Questions

    Explore conceptually related problems

    The diamter of a closed cylinder is 7 cm and its heght is 16 cm. Find: the total surface area of the cylinder.

    Mayank made a bird-bath for his garden in the shape of a cylinder with a hemispherical depression at one end. The height of the cylinder is 1.45 m and its radius is 30 cm. Find the total surface area of the bird-bath.

    Mayank made a bird-bath for his garden in the shape of a cylinder with a hemispherical depression at one end. The height of the cylinder is 1.45 m and its radius is 30 cm. Find the total surface area of the bird-bath.

    The area of base of a cylinder is 616 cm^(2) and height is 30 cm. Find its volume and total surface area.

    The diameter of the base of a cylinder is 7 cm and height is 5 cm. Find its curved surface area.

    The area of the base of a right circular cylinder is 616\ c m^2 and its height is 2.5cm. Find the curved surface area of the cylinder.

    The ratio between the radius of the base of height of a cylinder is 2:3. If its volume is 1617\ c m^3, find the total surface area of the cylinder.