Home
Class 11
MATHS
Consider the following graph of the func...

Consider the following graph of the function `y=f(x)dot` Which of the following is/are correct? fig. 1. `("lim")_(xvec1)f(x)` does not exist. 2.`("lim")_(xvec2)f(x)` does not exist. 3. `("lim")_(xvec3)f(x)=3`. 4. `("lim")_(xvec1.99)f(x)`= exists

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • LINEAR INEQUALITIES

    CENGAGE ENGLISH|Exercise All Questions|68 Videos

Similar Questions

Explore conceptually related problems

Consider the following graph of the function y=f(x). Which of the following is//are correct? (a) lim_(xto1) f(x) does not exist. (b) lim_(xto2)f(x) does not exist. (c) lim_(xto3) f(x)=3. (d)lim_(xto1.99) f(x) exists.

If f(x)=(3x^2+a x+a+1)/(x^2+x-2), then which of the following can be correct ("lim")_(xvec1)f(x)e xi s t s a=-2 ("lim")_(xvec-2)f(x)e xi s t s a=13 ("lim")_(xvec1)f(x)=4/3 ("lim")_(xvec-2)f(x)=-1/3

If f(x)=(3x^2+a x+a+1)/(x^2+x-2), then which of the following can be correct (a) ("lim")_(xvec 1)f(x) for a=-2 (b) ("lim")_(xvec-2)f(x) for a=13 (c) ("lim")_(xvec 1)f(x)=4/3 (d) ("lim")_(xvec-2)f(x)=-1/3

Which of the following limits tends to unity? (a) ("lim")_(xvec0)sin(tanx)/(sinx) (b) ("lim")_(xvecpi/2)sin(cosx)/(cosx) (c) ("lim")_(xvec0)"sin"(e^x-1)/x (d) ("lim")_(xvec0)(sqrt(1+x)-sqrt(1-x))/x

("lim")_(xvec1)(1-x)tan(pix)/2=_____

If ("lim")_(x->a)[f(x)g(x)] exists, then both ("lim")_(x->a)f(x)a n d("lim")_(x->a)g(x) exist.

If ("lim")_(x->a)[f(x)g(x)] exists, then both ("lim")_(x->a)f(x)a n d("lim")_(x->a)g(x) exist.

Which of the following is and determinate form (lim)_(xvec1)(x^3-1)/(x-1) b. (lim)_(xvec0)(1+x)^(1//x) c. (lim)_(xvec1)(1/(x^2-1)-1/(x-1)) d. (lim)_(xvec0)(|x|)^(s in R)

If f(x)=(|x|)/(x) , then show that lim_(xrarr0) f(x) does not exist.

If f(x)=(|x-a|)/(x-a) , then show that lim_(xrarra) f(x) does not exist.