Home
Class 11
MATHS
The equation of the common tangent touch...

The equation of the common tangent touching the circle `(x-3)^2+y^2=9` and the parabola `y^2=4x` above the x-axis is `sqrt(3)y=3x+1` (b) `sqrt(3)y=-(x+3)` (C)`sqrt(3)y=x+3` (d) `sqrt(3)y=-(3x-1)`

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    CENGAGE ENGLISH|Exercise All Questions|886 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

The equation of common tangent to the parabola y^2 =8x and hyperbola 3x^2 -y^2=3 is

The equation of the lines passing through the point (1,0) and at a distance (sqrt(3))/2 from the origin is (a) sqrt(3)x+y-sqrt(3) =0 (b) x+sqrt(3)y-sqrt(3)=0 (c) sqrt(3)x-y-sqrt(3)=0 (d) x-sqrt(3)y-sqrt(3)=0

The slopes of the common tangents of the ellipse (x^2)/4+(y^2)/1=1 and the circle x^2+y^2=3 are +-1 (b) +-sqrt(2) (c) +-sqrt(3) (d) none of these

The area of the circle x^2+y^2=16 exterior to the parabola y^2=6x is(A) 4/3(4pi-sqrt(3)) (B) 4/3(4pi+sqrt(3)) (C) 4/3(8pi-sqrt(3)) (D) 4/3(8pi+sqrt(3))

Find the equation of the tangent line to the curve y=sqrt(5x-3)-2 which is parallel to the line 4x-2y+3=0 .

Prove that the lines sqrt(3)x+y=0,\ sqrt(3)y+x=0,\ sqrt(3)x+y=1\ a n d\ sqrt(3)y+x=1 form a rhombus.

If 5-sqrt(3)=x+y sqrt(3) then (x,y) is

The equation of the tangents to the ellipse 4x^2 + 3y^2 = 5 , which are inclined at 60^0 to the X-axis are : (A) y = x/sqrt(3) +- sqrt(65/12) (B) y = sqrt(3) x +- sqrt(65/12) (C) y = sqrt(3)x +- sqrt(12/65) (D) none of these

Find the equation of the tangent line to the curve y=sqrt(5x-3)-2 which is parallel to the line 4x-2y+3=0

The equation of a circle of radius 1 touching the circles x^2+y^2-2|x|=0 is (a) x^2+y^2+2sqrt(2)x+1=0 (b) x^2+y^2-2sqrt(3)y+2=0 (c) x^2+y^2+2sqrt(3)y+2=0 (d) x^2+y^2-2sqrt(2)+1=0