Home
Class 12
MATHS
Two lines L1: x=5, y/(3-alpha)=z/(-2) an...

Two lines `L_1: x=5, y/(3-alpha)=z/(-2)` and `L_2: x=alpha, y/(-1)=z/(2-alpha)` are coplanar. Then `alpha` can take value (s) a. `1` b. `2` c. `3` d. `4`

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( \alpha \) for which the lines \( L_1 \) and \( L_2 \) are coplanar, we can follow these steps: ### Step 1: Write the equations of the lines in parametric form. The lines are given as: - \( L_1: x = 5, \frac{y}{3 - \alpha} = \frac{z}{-2} \) - \( L_2: x = \alpha, \frac{y}{-1} = \frac{z}{2 - \alpha} \) We can express these lines in parametric form: - For \( L_1 \): - Let \( z = t \) (parameter) - Then \( y = (3 - \alpha) \cdot \frac{t}{-2} = -\frac{(3 - \alpha)t}{2} \) - Thus, the parametric equations for \( L_1 \) are: \[ L_1: (5, -\frac{(3 - \alpha)t}{2}, t) \] - For \( L_2 \): - Let \( z = s \) (parameter) - Then \( y = -s \) - Thus, the parametric equations for \( L_2 \) are: \[ L_2: (\alpha, -s, (2 - \alpha) \cdot \frac{s}{2 - \alpha} = s) \] ### Step 2: Identify the direction ratios and points. From the parametric forms, we can identify: - Direction ratios for \( L_1 \): \( (0, 3 - \alpha, -2) \) - Direction ratios for \( L_2 \): \( (0, -1, 2 - \alpha) \) The points on the lines are: - Point on \( L_1 \): \( (5, 0, 0) \) - Point on \( L_2 \): \( (\alpha, 0, 0) \) ### Step 3: Set up the determinant for coplanarity. The lines \( L_1 \) and \( L_2 \) are coplanar if the scalar triple product of the direction ratios and the vector connecting the two points is zero. This can be expressed as a determinant: \[ \begin{vmatrix} 5 - \alpha & 0 & 0 \\ 0 & 3 - \alpha & -2 \\ 0 & -1 & 2 - \alpha \end{vmatrix} = 0 \] ### Step 4: Calculate the determinant. The determinant simplifies to: \[ (5 - \alpha) \begin{vmatrix} 3 - \alpha & -2 \\ -1 & 2 - \alpha \end{vmatrix} \] Calculating the 2x2 determinant: \[ = (3 - \alpha)(2 - \alpha) - (-2)(-1) = (3 - \alpha)(2 - \alpha) - 2 \] Expanding this: \[ = 6 - 3\alpha - 2\alpha + \alpha^2 - 2 = \alpha^2 - 5\alpha + 4 \] Thus, the determinant becomes: \[ (5 - \alpha)(\alpha^2 - 5\alpha + 4) = 0 \] ### Step 5: Solve for \( \alpha \). Setting the factors to zero gives: 1. \( 5 - \alpha = 0 \) → \( \alpha = 5 \) 2. \( \alpha^2 - 5\alpha + 4 = 0 \) Using the quadratic formula: \[ \alpha = \frac{5 \pm \sqrt{(5)^2 - 4 \cdot 1 \cdot 4}}{2 \cdot 1} = \frac{5 \pm \sqrt{25 - 16}}{2} = \frac{5 \pm 3}{2} \] This gives: \[ \alpha = \frac{8}{2} = 4 \quad \text{and} \quad \alpha = \frac{2}{2} = 1 \] ### Final Values of \( \alpha \): The values of \( \alpha \) for which the lines are coplanar are \( \alpha = 1, 4, 5 \). ### Answer: The correct options are: - a. \( 1 \) - d. \( 4 \)

To determine the values of \( \alpha \) for which the lines \( L_1 \) and \( L_2 \) are coplanar, we can follow these steps: ### Step 1: Write the equations of the lines in parametric form. The lines are given as: - \( L_1: x = 5, \frac{y}{3 - \alpha} = \frac{z}{-2} \) - \( L_2: x = \alpha, \frac{y}{-1} = \frac{z}{2 - \alpha} \) We can express these lines in parametric form: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES REASONING TYPE|2 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES LINKED COMPREHENSION TYPE|3 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES SINGLE CORRECT ANSWER TYPE|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise All Questions|294 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos

Similar Questions

Explore conceptually related problems

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if

If A=|[alpha,2], [2,alpha]| and |A|^3=125 , then the value of alpha is a. +-1 b. +-2 c. +-3 d. +-5

Consider the line L_(1) : (x-1)/(2)=(y)/(-1)=(z+3)/(1), L_(2) : (x-4)/(1)=(y+3)/(1)=(z+3)/(2) find the angle between them.

If the lines (x-2)/1=(y-3)/1)(z-4)/(-k) and (x-1)/k=(y-4)/2=(z-5)/1 are coplanar then k can have (A) exactly two values (B) exactly thre values (C) any value (D) exactly one value

The system of equations alpha(x-1)+y+z=-1, x+alpha(y-1)+z=-1 and x+y+alpha(z-1)=-1 has no solution, if alpha is equal to

Prove that the straight lines x/alpha=y/beta=z/gamma,x/l=y/m=z/n and x/(a alpha)=y/(b beta)=z/(c gamma) will be co planar if l/alpha(b-c)+m/beta(c-a)+n/gamma(a-b)=0

If n=pi/(4alpha), then tan alpha tan 2alpha tan 3 alpha ... tan(2n-1)alpha is equal to (a) 1 (b) 1/2 (c) 2 (d) 1/3

Let (z-alpha)/(z+alpha) is purely imaginary and |z|=2, alphaepsilonR then alpha is equal to (A) 2 (B) 1 (C) sqrt2 (D) sqrt3

let |{:(1+x,x,x^(2)),(x,1+x,x^(2)),(x^(2),x,1+x):}|=(1)/(6)(x-alpha_(1))(x-alpha_(2))(x-alpha_(3))(x-alpha_(4)) be an identity in x, where alpha_(1),alpha_(2),alpha_(3),alpha_(4) are independent of x. Then find the value of alpha_(1)alpha_(2)alpha_(3)alpha_(4)

L_(1):(x+1)/(-3)=(y-3)/(2)=(z+2)/(1),L_(2):(x)/(1)=(y-7)/(-3)=(z+7)/(2) The lines L_(1) and L_(2) are -