Home
Class 12
MATHS
Find the horizontal, vertical and obliq...

Find the horizontal, vertical and oblique asymptotes of each of the curves.
`{:((a),y=x/(x+4),,(b),y=(x^(2)+4)/(x^(2)-1)),((c),y=x^(3)/(x^(2)+3x-10),,(d),y=(x^(3)+1)/(x^(3)+x)),((e),y=x/(root(4)(x^(4)+1)),,(f),y=(x-9)/(sqrt(4x^(2)+3x+2))),((g),y=1/(2^(x)-1),,(h),y=1/(log_(e) x)),((i),y= 1/(2^(x) - 1),,,):}`

Text Solution

AI Generated Solution

To find the horizontal, vertical, and oblique asymptotes for each of the given curves, we will follow a systematic approach. Let's analyze each function step by step. ### (a) \( y = \frac{x}{x+4} \) 1. **Horizontal Asymptote**: - Find the limit as \( x \) approaches infinity. \[ \lim_{x \to \infty} \frac{x}{x+4} = \lim_{x \to \infty} \frac{1}{1 + \frac{4}{x}} = 1 ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • GETTING STARTED WITH GRAPHS

    CENGAGE ENGLISH|Exercise Exercises 1.1|1 Videos
  • GETTING STARTED WITH GRAPHS

    CENGAGE ENGLISH|Exercise Exercises 1.2|1 Videos
  • GETTING STARTED WITH GRAPHS

    CENGAGE ENGLISH|Exercise ILLUSTRATION 1.27|1 Videos
  • FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|7 Videos
  • GRAPH OF INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Exercises|18 Videos

Similar Questions

Explore conceptually related problems

If the coordinates of the vertices of an equilateral triangle with sides of length a are (x_(1),y_(1)),(x_(2),y_(2)) and (x_(3),y_(3)) then |(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1)|^2=(3a^(4))/4

Evaluate differentiation of y with respect to x : y=x^(3)+(4)/(3)x^(2)-5x+1

x-y relation is given by y=x^(n) calculate the value of n in the following :- (i) y=(x^(2))/(x^(2//3)) (ii) y=(x^(3//2))/(x^(1)) (iii) y=(x^(1//2))/(x^(1//2)) (iv) y=(x^(3//2))/(sqrt(x))

Find common tangent of the two curve y^(2)=4x and x^(2)+y^(2)-6x=0 (a) y=(x)/(3)+3 (b) y=((x)/(sqrt(3))-sqrt(3)) (c) y=(x)/(3)-3 (d) y=((x)/(sqrt(3))+sqrt(3))

Find common tangent of the two curve y^(2)=4x and x^(2)+y^(2)-6x=0 (a) y=(x)/(3)+3 (b) y=((x)/(sqrt(3))-sqrt(3)) (c) y=(x)/(3)-3 (d) y=((x)/(sqrt(3))+sqrt(3))

For the equations given below, tell the nature of graphs. (a) y =2x^(2) (b) y =-4x^(2) +6 (c) y = 6 ^(-4x) (d) y = 4(1 -e^(-2x)) (e) y =(4)/(x) (f) y =-(2)/(x)

1/(3x+y) + 1/(3x-y) = 3/4 1/(2(3x+y)) - 1/(2(3x-y)) = -1/8

Find the centre and radius of each of the following circle : (i) x^(2)+y^(2)+4x-4y+1=0 (ii) 2x^(2)+2y^(2)-6x+6y+1=0 (iii) 2x^(2)+2y^(2)=3k(x+k) (iv) 3x^(2)+3y^(2)-5x-6y+4=0 (v) x^(2)+y^(2)-2ax-2by+a^(2)=0

The solution of the differential equation (dy)/(dx)+(x(x^(2)+3y^(2)))/(y(y^(2)+3x^(2)))=0 is (a) x^(4)+y^(4)+x^(2)y^(2)=c (b) x^(4)+y^(4)+3x^(2)y^(2)=c (c) x^(4)+y^(4)+6x^(2)y^(2)=c (d) x^(4)+y^(4)+9x^(2)y^(2)=c

If x=3\ a n d\ y=-1, find the values of each of the using identity: (9y^2-4x^2)(81 y^4+36 x^2y^2+16 x^4)