Home
Class 12
MATHS
Draw the graph of the function f(x) = x-...

Draw the graph of the function `f(x) = x-|x2-x| -1 le x le 1`, where `[*]` denotes the greatest integer function. Find the points of discontinuity and non-differentiability.

Text Solution

AI Generated Solution

To solve the problem of drawing the graph of the function \( f(x) = x - |x^2 - x| \) for \( -1 \leq x \leq 1 \) and finding points of discontinuity and non-differentiability, we can follow these steps: ### Step 1: Understand the function The function involves an absolute value, so we need to analyze the expression \( |x^2 - x| \). This expression can be rewritten based on the sign of \( x^2 - x \). ### Step 2: Determine the critical points Set the expression inside the absolute value to zero: \[ ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • GRAPHS OF ELEMENTARY FUNCTIONS

    CENGAGE ENGLISH|Exercise EXERCISES|34 Videos
  • GRAPHS OF POLYNOMIAL AND RATIONAL FUNCTIONS

    CENGAGE ENGLISH|Exercise Exercises|17 Videos
  • GRAPHS OF TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Exercises|22 Videos

Similar Questions

Explore conceptually related problems

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

Knowledge Check

  • The domain of the function f(x)=(1)/(sqrt((x)-[x])) where [*] denotes the greatest integer function is

    A
    R
    B
    `R^(+)`
    C
    `R^(-)`
    D
    `R-Z`
  • Similar Questions

    Explore conceptually related problems

    The function f(x)=1+x(sinx)[cosx], 0ltxlepi//2 , where [.] denotes greatest integer function

    The function f(x)=1+x(sinx)[cosx], 0ltxlepi//2 , where [.] denotes greatest integer function

    Find the domain of the function f(x)=log_(e)(x-[x]) , where [.] denotes the greatest integer function.

    Discuss the contiuity of the funtion f(x) =[x] +|1-x|, -1 le xle 3, where [.] represents the greatest integer function .

    Draw the graph of f(x) = [x^(2)], x in [0, 2) , where [*] denotes the greatest integer function.

    f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

    The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is discontinuous