Home
Class 12
MATHS
The Integral int(pi/4)^((3pi)/4)(dx)/(1+...

The Integral `int_(pi/4)^((3pi)/4)(dx)/(1+cosx)` is equal to: (2) (3) (4)

A

`-1`

B

`-2`

C

`2`

D

`4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 + \cos x} \] we can use a property of definite integrals. The property states that: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx \] In this case, we can let \( a = \frac{\pi}{4} \) and \( b = \frac{3\pi}{4} \). Thus, we can rewrite the integral as: \[ I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 + \cos(\pi - x)} \] Since \( \cos(\pi - x) = -\cos x \), we have: \[ I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 - \cos x} \] Now we have two expressions for \( I \): 1. \( I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 + \cos x} \) 2. \( I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 - \cos x} \) Next, we can add these two equations: \[ 2I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \left( \frac{1}{1 + \cos x} + \frac{1}{1 - \cos x} \right) dx \] To combine the fractions, we need a common denominator: \[ \frac{1}{1 + \cos x} + \frac{1}{1 - \cos x} = \frac{(1 - \cos x) + (1 + \cos x)}{(1 + \cos x)(1 - \cos x)} = \frac{2}{1 - \cos^2 x} \] Since \( 1 - \cos^2 x = \sin^2 x \), we can rewrite the integral as: \[ 2I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{2}{\sin^2 x} \, dx \] This simplifies to: \[ 2I = 2 \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \csc^2 x \, dx \] Now, we can integrate \( \csc^2 x \): \[ \int \csc^2 x \, dx = -\cot x \] Thus, we have: \[ 2I = 2 \left[ -\cot x \right]_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \] Calculating the limits: \[ -\cot\left(\frac{3\pi}{4}\right) + \cot\left(\frac{\pi}{4}\right) = -(-1) + 1 = 1 + 1 = 2 \] So, we find: \[ 2I = 2 \implies I = 1 \] Thus, the value of the integral is: \[ \boxed{2} \]

To solve the integral \[ I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 + \cos x} \] we can use a property of definite integrals. The property states that: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise NUMERICAL VALUE_TYPE|28 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) (1)/(4+3 cos x)dx

int_(0)^( pi/4)tan^(3)dx

Knowledge Check

  • int_(-pi//4)^(pi//4) ( dx)/( 1+cos 2x) is equal to

    A
    1
    B
    2
    C
    3
    D
    4
  • Similar Questions

    Explore conceptually related problems

    int_(-pi/4)^(pi/4)(secx)/(1+2^(x))dx .

    I=int_(pi//5)^(3pi//10) (sinx)/(sinx+cosx)dx is equal to

    Evaluate : int_(0)^(pi) (dx)/(5+4cosx)

    Prove that : int_(pi//4)^(3pi//4) (1)/(1+cos x) dx = 2

    int_(-pi+4)^(pi//4) (tan^(2)x)/(1+a^(x))dx is equal to

    Evaluate : int_((pi)/(4))^((3pi)/(4))(x)/(1+sinx)dx

    int_(pi)^((3pi)/2)(sin^(4)x+cos^(4)x)dx