Home
Class 12
MATHS
If alpha=3sin^-1(6/11) and beta=3cos^-1(...

If `alpha=3sin^-1(6/11) `and `beta=3cos^-1(4/9)`, where the inverse trigonometric functions take only the principal values, then the correct option(s) is (are)

A

`cos beta gt 0`

B

`sin beta lt 0`

C

`cos (alpha + beta) gt 0`

D

`cos alpha lt 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given expressions for \( \alpha \) and \( \beta \): 1. **Given:** \[ \alpha = 3 \sin^{-1}\left(\frac{6}{11}\right) \] \[ \beta = 3 \cos^{-1}\left(\frac{4}{9}\right) \] 2. **Step 1: Analyze \( \alpha \)** - We know that \( \sin^{-1}(x) \) is defined for \( x \) in the range \([-1, 1]\). Here, \( \frac{6}{11} \) is valid. - Since \( \frac{6}{11} > \frac{1}{2} \), we can compare \( \sin^{-1}\left(\frac{6}{11}\right) \) with \( \sin^{-1}\left(\frac{1}{2}\right) \). - We know \( \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6} \). - Thus, \( \sin^{-1}\left(\frac{6}{11}\right) > \frac{\pi}{6} \). Therefore: \[ 3 \sin^{-1}\left(\frac{6}{11}\right) > 3 \cdot \frac{\pi}{6} = \frac{\pi}{2} \] Hence, \( \alpha > \frac{\pi}{2} \). 3. **Step 2: Analyze \( \beta \)** - We know \( \cos^{-1}(x) \) is defined for \( x \) in the range \([-1, 1]\). Here, \( \frac{4}{9} \) is valid. - Since \( \frac{4}{9} < \frac{1}{2} \), we can compare \( \cos^{-1}\left(\frac{4}{9}\right) \) with \( \cos^{-1}\left(\frac{1}{2}\right) \). - We know \( \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} \). - Thus, \( \cos^{-1}\left(\frac{4}{9}\right) > \frac{\pi}{3} \). Therefore: \[ 3 \cos^{-1}\left(\frac{4}{9}\right) > 3 \cdot \frac{\pi}{3} = \pi \] Hence, \( \beta > \pi \). 4. **Step 3: Combine \( \alpha \) and \( \beta \)** - Now we have: \[ \alpha > \frac{\pi}{2} \quad \text{and} \quad \beta > \pi \] Adding these inequalities: \[ \alpha + \beta > \frac{\pi}{2} + \pi = \frac{3\pi}{2} \] 5. **Step 4: Analyze the options** - **Option 1:** \( \cos(\beta) > 0 \) - Since \( \beta > \pi \), \( \cos(\beta) < 0 \). Thus, this option is **incorrect**. - **Option 2:** \( \sin(\beta) < 0 \) - Since \( \beta > \pi \), \( \sin(\beta) < 0 \). Thus, this option is **correct**. - **Option 3:** \( \cos(\alpha + \beta) > 0 \) - Since \( \alpha + \beta > \frac{3\pi}{2} \), \( \cos(\alpha + \beta) < 0 \). Thus, this option is **incorrect**. - **Option 4:** \( \cos(\alpha) < 0 \) - Since \( \alpha > \frac{\pi}{2} \), \( \cos(\alpha) < 0 \). Thus, this option is **correct**. 6. **Final Conclusion:** The correct options are **2 and 4**.

To solve the problem, we need to analyze the given expressions for \( \alpha \) and \( \beta \): 1. **Given:** \[ \alpha = 3 \sin^{-1}\left(\frac{6}{11}\right) \] \[ \beta = 3 \cos^{-1}\left(\frac{4}{9}\right) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (JEE Advanced)|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Find the values of the trigonometric function sin (-(11pi)/3)

Find the values of the trigonometric function sin( -11pi/3)

If we consider only the principal values of the inverse trigonometric functions , then the value of tan(cos^-1 (1/(5sqrt2)) -sin^-1 (4/sqrt(17))) is (a) sqrt(29)/3 (b) 29/3 (c) sqrt3/29 (d) 3/29

Write the principal value of cos^(-1)(cos(2pi)/3)+sin^(-1)(sin(2pi)/3)

What is the principal value of cos^(-1)cos((2pi)/3)+sin^(-1)sin((2pi)/3)?

If alpha=int_0^1(e^(9x+3tan^(-1)x))((12+9x^2)/(1+x^2))dx where tan^(-1)x takes only principal values, then, find the value of ((log)_e|1+alpha|-(3pi)/4)

LEVEL-V SINGLE ANSWER TYPE QUESTIONS If we consider only the principal values of the inverse trigonometric functions then the value 4 5/2-sin'而)is of tan cos (IIT 1994)

Write the principal value of cos^(-1)(cos((2pi)/3))+sin^(-1)(sin((2pi)/3))

If alpha = sin^(-1) (cos(sin^-1) x)) and beta = cos^(-1) (sin (cos^(-1) x)) , then find tan alpha. tan beta.

For the principal value, evaluate tan^(-1){2sin(4\ cos^(-1)(sqrt(3))/2)}