Home
Class 12
MATHS
Find the value of (.^(10)C(10))+(.^(10)C...

Find the value of `(.^(10)C_(10))+(.^(10)C_(0)+.^(10)C_(1))+(.^(10)C_(0)+.^(10)C_(1)+.^(10)C_(2))+"...."+(.^(10)C_(0)+.^(10)C_(1)+.^(10)C_(2)+"....." + .^(10)C_(9))`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression given in the question step by step. ### Step-by-Step Solution: 1. **Understanding the Expression**: The expression can be rewritten as: \[ \sum_{k=0}^{10} \binom{10}{k} \cdot (10-k) \] This represents the sum of combinations where we are summing the number of ways to choose `k` items from `10`, multiplied by the number of items left, which is `10-k`. 2. **Rearranging the Terms**: We can rearrange the expression to make it clearer: \[ \sum_{k=0}^{10} (10-k) \binom{10}{k} = 10 \sum_{k=0}^{10} \binom{10}{k} - \sum_{k=0}^{10} k \binom{10}{k} \] 3. **Using the Binomial Theorem**: According to the Binomial Theorem, we know that: \[ \sum_{k=0}^{n} \binom{n}{k} = 2^n \] For \( n = 10 \): \[ \sum_{k=0}^{10} \binom{10}{k} = 2^{10} = 1024 \] 4. **Calculating the Second Sum**: The second sum, \( \sum_{k=0}^{10} k \binom{10}{k} \), can be simplified using the identity: \[ k \binom{n}{k} = n \binom{n-1}{k-1} \] Thus, \[ \sum_{k=0}^{10} k \binom{10}{k} = 10 \sum_{k=1}^{10} \binom{9}{k-1} = 10 \cdot 2^9 = 10 \cdot 512 = 5120 \] 5. **Substituting Back**: Now substituting back into our rearranged expression: \[ 10 \cdot 1024 - 5120 = 10240 - 5120 = 5120 \] 6. **Final Result**: Therefore, the value of the original expression is: \[ \boxed{5120} \]

To solve the problem, we need to evaluate the expression given in the question step by step. ### Step-by-Step Solution: 1. **Understanding the Expression**: The expression can be rewritten as: \[ \sum_{k=0}^{10} \binom{10}{k} \cdot (10-k) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.7|9 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.5|8 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

Find the value of : ""^(10)C_4

Find the value of .^(20)C_(0) xx .^(13)C_(10) - .^(20)C_(1) xx .^(12)C_(9) + .^(20)C_(2) xx .^(11)C_(8) - "……" + .^(20)C_(10) .

The value of (.^(21)C_(1) - .^(10)C_(1)) + (.^(21)C_(2) - .^(10)C_(2)) + (.^(21)C_(3) - .^(10)C_(3)) + (.^(21)C_(4) - .^(10)C_(4)) + … + (.^(21)C_(10) - .^(10)C_(10)) is

Evaluate : ""^(13)C_(10)

Find the sum .^(10)C_1+^(10)C_3+^(10)C_5+^(10)C_7+^(10)C_9

Find the sum 2..^(10)C_(0) + (2^(2))/(2).^(10)C_(1) + (2^(3))/(3).^(10)C_(2)+(2^(4))/(4).^(10)C_(3)+"...."+(2^(11))/(11).^(10)C_(10) .

The value of sum_(r=2)^(10) ""^(r)C_(2).""^(10)C_(r) is

"^(30)C_(0)*^(20)C_(10)+^(31)C_(1)*^(19)C_(10)+^(32)C_(2)*18C_(10)+....^(40)C_(10)*^(10)C_(10) is equal to

In the expansion off (1+x)^(10)=.^(10)C_(0)+.^(10)C_(1)x+.^(10)C_(2)x^(2)+ . . .+.^(10)C_(10)x^(10) , then value of 528[(.^(10)C_(0))/(2)-(.^(10)C_(1))/(3)+(.^(10)C_(2))/(4)-(.^(10)C_(3))/(5)+ . . .+(.^(10)C_(10))/(12)] is equal to________.

Prove the following identieties using the theory of permutation where C_(0),C_(1),C_(2),……C_(n) are the combinatorial coefficents in the expansion of (1+x)^n,n in N: ""^(100)C_(10)+5.""^(100)C_(11)+10 .""^(100)C_(12)+ 10.""^(100)C_(13)+ 10.""^(100)C_(14)+ 10.""^(100)C_(15)=""^(105)C_(90)