Home
Class 12
MATHS
8 players P1, P2, P3, ,P(8) play a knoc...

`8` players `P_1, P_2, P_3, ,P_(8)` play a knock out tournament. It is known that all the players are of equal strength. The tournament is held in three rounds where the players are paired at random in each round. If it is given that `P_1` wins in the third round.if p be the be the probability that `P_2` loses in second round ,yhen the value of 7p is

Text Solution

Verified by Experts

Let A be the event of `P_(1)` winning in third round and B be the event of `P_(2)` winning in first round but ossing in second round. We have
`P(A)(""^(8n-1)C_(n-1))/(""^(8n)C_(n))=1/8`
`P(BnnA)`
= Probability of both `P_(1) and P_(2)` winning in first round `xx` Probability of `P_(1)` winning and `P_(2)` losing in second round `xx` probability of `P_(1)` winning in third round
`(""^(8n-2)C_(4n-2))/(""^(8n)4_(n))xx(""^(4n-2)C_(2n-1))/(""^(4n)C_(2n))xx(""^(2n-1)C_(n-1))/(""^(2n)C_(n))=(n)/(4(8n-1))`
Hence, `P((B)/(A))=(P(BnnA))/(P(A))=(2n)/(8n-1)`
Alternate solution:
Probability than `P_(2)` wins in first round given `P_(1)` wins is
`P((B)/(A))=(P(BnnA))/(P(A))=(2n)/(8n-1)`
In second round, probability that `P_(2)` loses in second round given `P_(1)` wins in
`1-(2n-1)/(4n-1)=(2n)/(4n-1)`
Hence, probability than `P_(2)` loses in second round, given `P_(1)` wins in third round is 2n/(8n-1).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROBABILITY II

    CENGAGE ENGLISH|Exercise CONCEPT APPCICATION EXERCISE 14.1|5 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise CONCEPT APPCICATION EXERCISE 14.2|3 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROBABILITY I

    CENGAGE ENGLISH|Exercise JEE Advanced|7 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos

Similar Questions

Explore conceptually related problems

8n players P_(1),P_(2),P_(3)……..P_(8n) play a knock out tournament. It is known that all the players are of equal strength. The tournament is held in 3 where the players are paired at random in each round. If it is given that P_(1) wins in the third round. Find the probability that P_(2) looses in the second round.

Eight players P_1, P_2, P_3, ...........P_8 , play a knock out tournament. It is known that whenever the players P_i and P_j , play, the player P_i will win if i lt j . Assuming that the players are paired at random in each round, what is the probability that the players P_4 , reaches the final ?

Knowledge Check

  • If the numbers p+3, p + 2, 3p - 7 and 2p-3 are in proportion, then the value of p is:

    A
    ` - 1 `
    B
    1
    C
    5
    D
    ` - 5`
  • Similar Questions

    Explore conceptually related problems

    In a knockout tournament 2^(n) equally skilled players, S_(1),S_(2),….S_(2n), are participatingl. In each round, players are divided in pair at random and winner from each pair moves in the next round. If S_(2) reaches the semi-final, then the probability that S_(1) wins the tournament is 1/84. The value of n equals _______.

    Sixteen players P_(1),P_(2),P_(3)….., P_(16) play in tournament. If they grouped into eight pair then the probability that P_(4) and P_(9) are in different groups, is equal to

    2^n players of equal strength are playing a knock out tournament. If they are paired at randomly in all rounds, find out the probability that out of two particular players S_1a n dS_2, exactly one will reach in semi-final (n in N ,ngeq2)dot

    2^n players of equal strength are playing a knock out tournament. If they are paired at randomly in all rounds, find out the probability that out of two particular players S_1a n dS_2, exactly one will reach in semi-final (n in N ,ngeq2)dot

    A sample space consists of 3 sample points with associated probabilities given as 2p ,p^2,4p-1. Then the value of p is

    Thirty-two players ranked 1 to 32 are playing in a knockout tournament. Assume that in every match between any two players the better ranked player wins, the probability that ranked 1 and ranked 2 players are winner and runner up respectively is p, then the value of [2//p] is, where [.] represents the greatest integer function,_____.

    Thirty-two players ranked 1 to 32 are playing in a knockout tournament. Assume that in every match between any two players the better ranked player wins, the probability that ranked 1 and ranked 2 players are winner and runner up respectively is p, then the value of [2//p] is, where [.] represents the greatest integer function,_____.