Home
Class 12
MATHS
If veca,vecb,vecc are mutually perpendic...

If `veca,vecb,vecc` are mutually perpendicular vector and `veca=alpha(vecaxxvecb)+beta(vecbxxvecc)+gamma(veccxxveca) and [veca vecb vecc]=1 then vecalpha+vecbeta+vecgamma=` (A) `|veca|^2` (B) `-|veca|^2` (C) 0 (D) none of these

Text Solution

AI Generated Solution

To solve the problem step by step, we will analyze the given information and use properties of vectors, particularly focusing on the relationships between mutually perpendicular vectors and the scalar triple product. ### Step 1: Understand the given vectors We are given three mutually perpendicular vectors \( \vec{a}, \vec{b}, \vec{c} \). This means: \[ \vec{a} \cdot \vec{b} = 0, \quad \vec{b} \cdot \vec{c} = 0, \quad \vec{c} \cdot \vec{a} = 0 \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

If veca,vecb,vecc are mutually perpendicular vectors of equal magnitude show that veca+vecb+vecc is equally inclined to veca, vecb and vecc

If vecaxx(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0 , then [(veca,vecb,vecc)]=

Express veca,vecb,vecc in terms of vecbxxvecc, veccxxveca and vecaxxvecb .

If veca,vecb and vecc are three mutually perpendicular unit vectors then (vecr.veca)veca+(vecr.vecb)vecb+(vecr.vecc)vecc= (A) ([veca vecb vecc]vecr)/2 (B) vecr (C) 2[veca vecb vecc] (D) none of these

if veca, vecb and vecc are there mutually perpendicular unit vectors and veca ia a unit vector then find the value of |2veca+ vecb + vecc |^2

If veca,vecb,vecc be three vectors such that [veca vecb vec c]=4 then [vecaxxvecb vecbxxvecc veccxxveca] is equal to

For three vectors veca+vecb+vecc=0 , check if (vecaxxvecb)=(vecbxxvecc)=(veccxxveca)

If veca,vecb,vecc are linearly independent vectors, then ((veca+2vecb)xx(2vecb+vecc).(5vecc+veca))/(veca.(vecbxxvecc)) is equal to

If veca,vecb and vecc are non coplaner vectors such that vecbxxvecc=veca , veccxxveca=vecb and vecaxxvecb=vecc then |veca+vecb+vecc| =

If veca, vecb, vecc are three non coplanar, non zero vectors then (veca.veca)(vecbxxvecc)+(veca.vecb)(veccxxveca)+(veca.vecc)(vecaxxvecb) is equal to